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orts about the potential for predicting prognosis of neuroblastoma patients using
microarray gene expression profiling of the tumors. However these studies have revealed an apparent
diversity in the identity of the genes in their predictive signatures. To test the contribution of the platform to
this discrepancy we applied the z-scoring method to minimize the impact of platform and combine gene
expression profiles of neuroblastoma (NB) tumors from two different platforms, cDNA and Affymetrix. A total
of 12442 genes were common to both cDNA and Affymetrix arrays in our data set. Two-way ANOVA analysis
was applied to the combined data set for assessing the relative effect of prognosis and platform on gene
expression. We found that 26.6% (3307) of the genes had significant impact on survival. There was no
significant impact of microarray platform on expression after application of z-scoring standardization
procedure. Artificial neural network (ANN) analysis of the combined data set in a leave-one-out prediction
strategy correctly predicted the outcome for 90% of the samples. Hierarchical clustering analysis using the
top-ranked 160 genes showed the great separation of two clusters, and the majority of matched samples
from the different platforms were clustered next to each other. The ANN classifier trained with our combined
cross-platform data for these 160 genes could predict the prognosis of 102 independent test samples with
71% accuracy. Furthermore it correctly predicted the outcome for 85/102 (83%) NB patients through the
leave-one-out cross-validation approach. Our study showed that gene expression studies performed in
different platforms could be integrated for prognosis analysis after removing variation resulting from
different platforms.

Published by Elsevier Inc.
Introduction

Neuroblastoma (NB) is the most common solid extracranial tumor
of childhood. Patients with high-risk neuroblastoma still have a very
poor outcome; therefore, the prediction of prognosis is important for
the selection of treatment. We and others have reported the capability
of predicting prognosis of neuroblastoma patients using microarray
gene expression profiling [1–5]. However these studies have revealed
an apparent diversity in the identity of the genes in their predictive
signatures. The factors causing the diversitymay include the difference
of patient treatment protocol, tumor sample source, tumor selection,
sample number, sample preparation, microarray platform, and data
analysis. Integrating data from existing experiments into a metadata
pool may be beneficial for the retrieval of a gene signature that best
predicts outcome for patients with neuroblastoma.
Inc.

l., An integrated cross-platfo
Microarray technology has become a powerful tool for analyzing
gene expression and several different microarray platforms have
emerged during the past several years including commercial and
custom-made cDNA and oligonucleotide arrays. The diversity of
platforms has made it a challenge to compare and integrate the data
sets generated in different experiments. Many comparison studies
have been done to investigate the agreement in results obtained with
different platforms [6–12]. Recently Larkin et al. [6] compared the
whole gene expression data set generated in Affymetrix and cDNA
platforms by using a mouse model of angiotensin II-induced
hypertension and found that the analysis of cardiac gene expression
yielded consistent results for greater than 90% of the genes in common
between the two platforms.

In this study we compared and integrated the gene expression
profiles of 42 neuroblastoma tumor samples with known patient
outcome, using both cDNA and the Affymetrix platforms. We
combined the data sets from different platforms after using z-scoring
to minimize the impact of platform and assessed the relative effect of
prognosis and platform on gene expression of the combined data. We
rm prognosis study on neuroblastoma patients, Genomics (2008),

mailto:khanjav@mail.nih.gov
http://dx.doi.org/10.1016/j.ygeno.2008.05.014
http://www.sciencedirect.com/science/journal/08887543
http://dx.doi.org/10.1016/j.ygeno.2008.05.014


2 Q.-R. Chen et al. / Genomics xxx (2008) xxx–xxx

ARTICLE IN PRESS
used the signature obtained from the integrated data to validate
independent data from a different laboratory.

Results

Impact of prognosis and platform on gene expression

To assess if the expression profile data from two different array
platforms could be integrated for prognosis analysis, we performed
gene expression profiles of 42 neuroblastoma tumor samples with
known outcome on both cDNA and Affymetrix platforms (Supple-
mental Table 1). The data from each platform was normalized
separately as described in detail under Materials and methods. The
Unigene ID was used as a common identifier to link the two platforms.
In case of multiple probes representing the same Unigene cluster, the
probe with the top correlation (Pearson correlation) between cDNA
and Affymetrix arrays was kept for the analysis. A total of 12442
unique Unigene clusters were common to both platforms and were
kept for the subsequent analysis. We performed log2 transformation
for the expression ratio and z-score standardization across samples
for each gene separately for each platform. The data sets from two
different platforms were then combined for further analysis. The gene
correlation between the data collected from two platforms is shown in
Fig. 1. Around 50% of genes have a correlation greater than 0.56
(Pb0.0001).

We used principal components analysis (PCA) to reduce the
dimensionality of the data. The first three principal components
showed the differential expression of tumors with good prognosis and
poor prognosis (Fig. 2A). Hierarchical clustering using all of 12442
genes also showed a separation of tumors with good prognosis and
poor prognosis (Fig. 2B), but three of tumor samples (NB282, NB206
and NB207) were shown clearly not clustered according to their
status. In the original paper [1] NB282 was also predicted to have poor
prognosis and it is possible that this patient may have relapsed after
the 3-year follow-up period since there is a small percentage of
patients that relapse after 3 years. Unfortunately because the patients
were anonymized for our study and have severed all linking
Fig. 1. Cross-platform correlation of neuroblastoma prognosis gene expression data.
Forty-two unique neuroblastoma samples with 26 in good prognosis group (Alive) and
16 in poor prognosis (Dead) were analyzed by both cDNA and Affymetrix microarray
platforms. The Unigene ID was used as a common identifier. The Pearson correlation
was calculated for the probes representing the same Unigene cluster; the probewith the
top correlation between cDNA and Affymetrix arrays was kept for the analysis (a total of
12442 Unigenes). The distribution of correlations for 12442 unigenes is shown in filled
bars. The curve shows the distribution of the correlations of the reshuffled data with
random sample labels for each gene; the process was repeated for 1000 times. The
dashed vertical line represents the Pb0.001 level.
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information we do not have the means to see what happened to the
patient after 3 years. Interestingly NB206 and NB207 were predicted
to have poor prognosis using ANN in the original paper [1], although
they are not clustered with other poor prognosis samples in our
hierarchical clustering analysis here. There are two possible reasons
for this. First, hierarchical clustering is an unsupervised linear
classification tool and we used all quality filtered genes and thus it
is not expected to work as well as ANN which is supervised nonlinear
classification with use of hidden layers. Second, of note NB206 and
NB207, although they died of disease, had relatively longer survival
times (5.8 and 3.1 years) compared to other poor prognosis samples.
Thus these unusual samples may be biologically different compared
with the majority of others who died of disease. These are speculative
and difficult to validate.

We then investigated the effect of platform on the combined data
analysis using two-way ANOVA as described by Larkin et al. [6]. Fig.
2C showed the source of variation associated with the different
factors: prognosis, platform, and interaction. The F-ratio for each
factor represents the variance by this factor relative to the random
within-group variance (error). Interaction addresses whether the
effect of prognosis depends on platform or vice versa. In this two-way
ANOVA result, the F-ratio of 0.058 for platform factor means that the
variation associated with platform was very low, suggesting that the
effect of platform could be removed by the simple z-scoring
standardization; F-ratio of 5.83 for prognosis effect means that the
variation associated with prognosis is much larger. This result agreed
with the result of PCA and hierarchical clustering. In detail, for the
12442 genes present on both arrays, 26.6% (n=3307) had significant
impact (P prognosisb0.01) on prognosis; there was no significant
impact of microarray platform on expression levels after the normal-
ization noted above (P_platformN0.19 for all genes). The interaction in
the ANOVA analysis identifies genes with divergent gene expression
measurements between the two platforms [6]. We found that 2.0%
(n = 253) of all 12442 genes had significant interaction
(P_interactionb0.01) between platform and prognosis (Supplemental
Table 5), which means that the two platforms gave discordant
measurements of samples with good and poor prognosis for this
subset of genes. The false discovery rate (FDR) of the test at
significance level of 0.05 is shown in Supplemental Table 2; according
to FDR-adjusted significance level 3632 genes had significant
prognosis impact, 21 genes showed interaction and no gene had
significant platform impact. All data sets as well as the ANOVA results
are available in an online searchable database (http://pob.abcc.ncifcrf.
gov/cgi-bin/JK). To investigate the biological differences between
good and poor prognosis groups, we performed GO analysis on these
3307 significant genes (P_prognosisb0.01) as well as their signifi-
cance (Supplemental Table 3). Genes involved in signal transducer
activity were significantly associated with good prognosis group;
genes involved in metabolism, mitotic cell cycle, biosynthesis, RNA
and DNA metabolism, and RNA processing were significantly
associated with poor prognosis group.

We also compared the z-score method with two other methods,
Distance Weighted Discrimination (DWD) [13] and mean-centering
method, in removing variation resulting from different platforms. As
shown in Supplemental Fig. 1, all three methods worked well, which
suggested that all of these methods could be used to integrate the
data. In addition, we validated the integration method on a published
breast cancer data set [11] (Supplemental Fig. 2). Finally we validated
our method using a data set from preclinical pediatric xenograft
samples generated on custom cDNA array [14] and Affymetrix human
U133plus2 array [15] (Supplemental Fig. 3). For this data set RNA from
the same xenograft samples were isolated in independent labora-
tories and were profiled with cDNA by our laboratory [14] and
Affymetrix microarrays from an independent laboratory [15], respec-
tively (see Materials and methods and Supplemental Fig. 3 for more
details).
rm prognosis study on neuroblastoma patients, Genomics (2008),
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Fig. 2. The impact of prognosis on gene expression. The data sets of 42 neuroblastoma samples from two platforms were combined after the normalization and z-score
standardization to remove the effect of platform. The poor prognosis samples are shown in red (cDNA) and magenta (Affymetrix), good prognosis in green (cDNA) and blue
(Affymetrix). (A) Loading plot of top three principal components of the 84 experiments using all 12442 Unigenes demonstrates the separation of good prognosis from poor prognosis
samples. Platform effect is not seen after normalization. The sample labels are shown as follows: platform-stage-MYCN status-sample name-survival status. For MYCN, NA, not
amplified, and A, amplified; and for survival status A, alive, and D, dead. (B) Hierarchical clustering analysis using all 12442 Unigenes showed that the experiments are mainly
clustering according to clinical outcome. (C) The sources of variation in the two-way ANOVA analysis. Prognosis has the highest variation.
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Neuroblastoma prognosis analysis on cross-platform data

To investigate if the data integrated from the two platforms could
be used for prognosis analysis, ANN analysis and leave-one-out
prediction strategy were applied on the combined cross-platform data
of 42 neuroblastoma samples with 12442 genes. Samples analyzed on
the two platforms were considered as different samples, the same
Please cite this article as: Q.-R. Chen, et al., An integrated cross-platfo
doi:10.1016/j.ygeno.2008.05.014
samples from both platforms were left out as test samples when
performing the leave-one-out testing. We found that the ANNs
correctly predicted 30/32 poor-outcome and 46/52 good-outcome
cases (Fig. 3A) with an accuracy rate 90%. To identify the optimal set of
genes that results in the minimum classification errors, we performed
a gene minimization procedure in a separate ANN analysis. We
observed that the top 160 ANN-ranked probes resulted in the minimal
rm prognosis study on neuroblastoma patients, Genomics (2008),
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Fig. 4. Integrated data from different cohorts of patients. The data sets of 42
neuroblastoma samples on cDNA and Affymetrix platforms (84 experiments) and a
data set of 102 neuroblastoma samples produced on Affymetrix platform generated by a
different lab [4] with a different cohort of patients were combined after the
normalization and z-score standardization separately. (A) Loading plot of top three
principal components of the 186 experiments using all 12442 Unigenes demonstrates
the separation of good prognosis from poor prognosis samples. Platform effect and
patient cohort effect are not seen after standardization. The sample labels are shown as
follows: for patient cohort and platform status affy=42 neuroblastoma samples on
Affymetrix, cDNA=42 neuroblastoma samples on cDNA, test=102 neuroblastoma
samples on Affymetrix; for survival status A, alive, and D, dead. (B) The sources of
variation in the ANOVA analysis. Prognosis has the highest variation.
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classification error (Fig. 3B). The ranking information is also available
in the online searchable database (http://pob.abcc.ncifcrf.gov/cgi-bin/
JK). Hierarchical clustering analysis (Fig. 3C) using the 160 top-ranked
probes showed two distinct clusters (good prognosis vs poor
prognosis group). We did not observe a platform effect on the
clustering. The majority of matched samples from the different
platforms were clustered next to each other. In most cases they have
a similar heatmap pattern. This result again suggests that the data
from two platforms could be integrated for the prognosis analysis
after the data standardization.

Prediction of prognosis in an independent test set

To investigate if the experiment of independent samples from a
different lab can be integrated with the previous cross-platform data
set of 42 samples, we used an independent test data set of 102
neuroblastoma samples, representing a different cohort of patients,
produced on the Affymetrix U133ABset platform generated by a
different lab [4]. This data set includes 56 good prognosis samples (no
disease relapse for at least 5 years from diagnosis) and 46 poor
prognosis samples (have disease relapse). We performed PCA and
ANOVA analysis on the integrated data consisting of the cross-
platform data set of 42 samples (84 experiments) and the indepen-
dent data set of 102 samples, each of them was z-score-standardized
before combined. As shown in Fig. 4A the samples representing
different cohort of patients on different platforms are intermingled.
Separation between good and poor prognosis groups could be seen as
well. ANOVA analysis showed that the variation associated with
prognosis is much larger than platform and patient cohort (Fig. 4B).

We also tested the prediction power of 160 top-ranked genes on
samples from the independent data set. We recalibrated or trained the
ANNs with the cross-platform data of 42 samples for the 160 top-
ranked genes and predicted the prognosis of 102 neuroblastoma
samples in the independent test data set [4]. The ANNs correctly
predicted the outcomes for 32/46 poor outcome and 40/56 good
outcome patients, corresponding to the accuracy rate of 71% (Fig. 5A).
The Kaplan-Meier survival curve of event-free survival was con-
structed for the patients classified as good and poor outcome by the
ANN analysis above (Fig. 5B). The results showed that the patients
classified into different outcomes had significantly different survival
probabilities (Pb0.0001). We also used ANNs to predict the prognosis
of the 102 samples with the 160 top-ranked probes using a leave-one-
out prediction strategy. We found that this ANN classifier correctly
predicted 38/46 poor-outcome and 47/56 good-outcome cases with
the accuracy rate 83%. This corresponds to a sensitivity of 83% and
specificity of 84% for the poor-outcome patients (data not shown).

Discussion

We have shown that gene expression studies performed in
different platforms could be combined for prognosis analysis after
properly removing variation resulting from different platforms.
However to perform integration of data from different sources with
highly heterogeneous cross-platform data sets, many factors must be
considered, such as sample source, sample composition, time interval
of freezing of samples, RNA preparation, labeling method, array
platform, data preprocessing, and other technical noises. In this
study we mainly focused on the noise caused by platforms using
Fig. 3. Prediction of neuroblastoma outcome using cross-platform data. (A) ANN voting resu
leave-one-out prediction strategy. The same samples from both platforms were left out as te
prognosis, greenwith good prognosis. Vertical line at 0.5 is the decision boundary for outcom
ANN prediction. ANNs were trained using 42 samples from both platforms; the average pred
error rate was 160. (C) Hierarchical clustering analysis using the top 160 Unigenes showed
different platforms clustered tightly. Experiment color codes and sample labels are used as

Please cite this article as: Q.-R. Chen, et al., An integrated cross-platfo
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homogenous sample preparation. We examined the effect of the
platform by carefully selecting the same RNA samples for both cDNA
and Affymetrix oligonucleotide platforms, and applied the z-scoring
method to integrate the cross-platform data. Because of the use of z-
scoring to standardize the data from each of the different platforms the
method will best work when combining similar data sets, in our case
both data sets were from neuroblastoma tumors. We compared two
neuroblastoma prognosis data sets generated on in-house cDNA and
Affymetrix oligonucleotide arrays by using ANOVA, PCA, and hier-
archical clustering analysis. All of the results confirmed that platform
had no significant effect after standardization but patient prognosis
had a dominant impact on gene expression levels of combined data.
lts for outcome prediction of 42 samples from two platforms using 12442 Unigenes in a
st samples when performing leave-one-out test. Red represents the samples with poor
e prediction, good signatureb0.5, poor signatureN=0.5. (B) Gene minimization plot for
iction errors were calculated. The minimal number of genes that generated the minimal
the experiments clustered according to clinical outcome. Matched samples from the
in Fig. 2.
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Hierarchical clustering analysis using the top-ranked genes separated
well the samples of the good prognosis group from those of poor
prognosis. The same samples analyzed in two platforms clustered
tightly; they were next to each other in most of cases. However there
were a small set of genes which showed a significant interaction
between prognosis and platform. Splice variants, difference of probe
sequences used in both platforms, and the contamination of cDNA
clones may contribute to the inconsistence of their expressions.

It has been well discussed [6,7,11] that methods used for the data
preprocessing and handling may affect the comparability of expres-
sions across platforms. To perform the cross-platform comparison
the Unigene ID has been frequently used as a unique identifier to
match probes on the different platforms. The sequence-matching
approach has also been used to increase the cross-platform
consistency [16]. We used Unigene ID as the common identifier in
this study; in cases where multiple probes were represented for
same unigene in both cDNA and Affymetrix platforms, we kept the
top correlated probes in the neuroblastoma study; and the average
of multiple probes was used in pediatric xenograft data sets and
breast cancer data sets (Supplemental Figs. 2 and 3). The success of
this method is evident by the unsupervised hierarchical clustering
analysis (Fig. 3C and Supplemental Fig. 3B); the majority of matched
samples from the different platforms were clustered next to each
other. Since the normalization methods for the data from the
different platforms are very different, we normalized the data sets
from cDNA array and Affymetrix array platforms separately in their
own standard normalization methods. Then each data set was
standardized using a simple z-score transformation method and
combined for analysis. This simple standardizing process has been
proven to work well in our study and make the data from two
different platforms, but similar data sets, comparable and combin-
able on the same scale. We used ANOVA analysis [6] to assess the
impact of platform on expression levels after z-scoring standardiza-
tion in neuroblastoma study and have not observed any gene with
significant impact of platform. DWD and mean-centered methods
were also proved to work well. A previous study [11] illustrated that
data from different microarray platforms are variable to the extent
that direct integration of data from several sources may be
complicated and unreliable. Our study clearly exhibits the promising
result of data integration from different platforms, and we have
tested the method on the breast cancer cell line data used in that
study (Supplemental Fig. 2). PCA analyses showed that after z-score
standardization the experiments of same cell line with data
generated on different platforms and different normalizations cluster
together tightly; ANOVA analysis also indicated that the standardiza-
tion completely reduced the platform effect and increased the
difference between cell lines. In addition, we validated the method
on a data set of preclinical pediatric xenograft generated on both
cDNA and Affymetrix platforms (Supplemental Fig. 3). The result in
Supplemental Fig. 2 indicated that the integrative method is
applicable to multiclass unsupervised (PCA and hierarchical cluster-
ing analysis) and supervised (ANN analysis) classification. Further-
more, we used a neuroblastoma prognosis data set generated on
Affymetrix U133ABset platform from a different laboratory by
Asgharzadeh et al. [4] as an independent test set. Of note the ANN
classifier calibrated or trained with our combined cross-platform
data could predict the prognosis of 102 samples of the independent
test set to 71% accuracy. The 42 tumor samples we had were of
Fig. 5. Prediction of neuroblastoma prognosis in an independent data set. (A) ANN voting res
[4]. The ANNs were trained using the top-ranked 160 Unigenes with the cross-platform data
and plugged in as test samples. Magenta represents the samples with poor prognosis; blue w
good signature b0.5, poor signature N=0.5. ANN classifier correctly predicted 32/46 poor-out
shown as disease status-sample number. For disease status, “poor” means patients relapse
diagnosis. (B) Kaplan-Meier curve of event-free-survival probability of 102 patients based on
significantly different survival probability (Pb0.0001).
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different stages with or without MYCN amplification; however the
102 samples from Asgharzadeh et al. [4] only included the patients
in the high stage without MYCN amplification. Considering that the
data are from a different lab, a different platform, with a different
data normalization method, a different sample collection method,
and even different patient selection, it is not trivial to achieve such
accuracy. Again the ANN analysis on this independent set with the
160 genes correctly predicted 83% of patients in a leave-one-out
prediction strategy, further indicating that the gene signature
obtained from the cross-platform data is reliable.

Functional GO analysis for the top 160 genes obtained from the
integrated data indicated that genes related with mitochondrion
were significantly associated with the poor prognosis group (Pb0.01
and Bonferroni corrected Pb0.01). Genes involved in energy path-
ways, mitotic cell cycle, ATPase activity, and structural constituent of
ribosome were also significantly associated with the poor prognosis
group (Pb0.05), although it is not significant after Bonferroni
correction (data not shown). So far several gene expression-based
prognostic classifiers have been published [1–5]; comparison of the
160 genes with those classifiers showed some overlapped genes.
There are 8 genes overlapped with the classifier identified by
Oberthuer et al. [5] (CHAF1A, CNR1, FLJ20105, MAP7, PDE4DIP,
PGM2L1, PMP22, and WSB1), 3 genes with Asgharzadeh et al. [4]
(CNR1, PGM2L1, and TMOD2), 2 genes with Schramm et al. [2]
(NEDD8 and PSMA6), 1 gene with Wei et al. [1] (CNR1) and no
overlap with the classifier of Ohira et al. [3]. It is not too surprising to
find that very few overlapped genes between the 160-gene classifier
and the other different classifiers. Several reasons may account for
this, since these studies were performed using a heterogeneous set
of samples with patients receiving different treatment protocols,
tumor selection, sample number, and sample preparation play an
important role in the classifier identification. Because of the rarity of
neuroblastoma incidence, sample numbers for current neuroblas-
toma published studies are limited when done in a single lab.
Therefore the z-scoring method enables us to integrate data from
different existing data into a metadata pool to identify a prognostic
gene signature.

During recent years microarray technology has made it possible
and relatively affordable for scientists to study gene expression on a
global scale. More and more microarray gene expression data have
been deposited in public databases for scientists to share. Exploring
the methods to standardize the data from different sources and
different platforms and to make data comparable and data integration
possible will be necessary, especially for studies of rare diseases such
as neuroblastoma where there is a lack of sufficient samples to
perform large studies. In addition, to perform a large study in a single
lab using a single platform is technically challenging because of
preferences for different technologies in individual labs and the
continuing evolution of microarray technology. Therefore data
integration may be a strategy for retrieval of the best gene signature.

In summary, we used the z-scoring method to integrate the
neuroblastoma prognosis data sets from different platforms; the effect
of platform was eliminated to the minimal level and the greatest
signal was due to prognosis. Using ANN analysis and a leave-one-out
strategy to predict the patient’s prognosis we found that more than
90% of samples are independent of platform. The top-ranked 160
genes from ANN may have a relevance to biology. The ANN classifier
trained for these genes with our combined cross-platform data could
ults for outcome prediction of 102 neuroblastoma samples from an independent test set
of 42 samples. The data set from 102 neuroblastoma samples were z-score transformed
ith good prognosis. Vertical line at 0.5 is the decision boundary for outcome prediction,
come and 40/56 good-outcome cases with the accuracy rate 71%. The sample labels are
d within 5 year and “good” means there is no disease relapse for at least 5 years from
the ANN analysis obtained from A. The patients classified as good and poor outcome had
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predict the prognosis of 102 independent test samples with pretty
high accuracy. Our study showed that gene expression studies
performed in different platforms could be integrated for prognosis
analysis after removing variation resulting from different platforms.

Materials and methods

Tumor samples and microarray experiments

Forty-two pretreatment primary neuroblastoma tumor samples
from patients with outcome information were obtained retrospec-
tively from three sources [1]. Patients were divided into two outcome
groups: the “good-outcome” (Alive) group had event-free survival
(i.e., neither relapses nor neuroblastoma progression) for at least 3
years (n=26), and the “poor-outcome” (Dead) group died due to
neuroblastoma disease (n=16). Total RNA from seven human cancer
cell lines (CHP212, RD, HeLa, A204, K562, RDES, and CA46) was pooled
in equal portions to constitute a reference RNA, which was used in all
of the cDNA microarrray experiments. RNA preparation and cDNA
microarray experiment was done as previously described [1]. The
same RNAs were used for Affymetrix microarray experiments.
Biotinylated cRNA was synthesized and hybridized to Affymetrix
Genechip U133 set (HG-U133A and HG-U133B arrays; Affymetrix,
Santa Clara, CA) according to the Affymetrix protocol. For the
Xenograft data a total 42 experiments of preclinical pediatric
xenograft samples was analyzed (22 experiments on custom cDNA
array from our laboratory [14] and 20 experiments on Affymetrix
human U133plus2 array platform from an independent laboratory
[15]). The data came from three pediatric cancer types: neuroblastoma
(NB), rhabdomyosarcoma (RMS), and Ewing's sarcoma (EWS) (Supple-
mental Table 4).

Data processing

A total of 42,578 cDNA clones were printed on our in-house cDNA
array. The cDNA gene expression ratios between tumor RNA and
reference RNA on each microarray were normalized using a pin-based
normalization method [1]. To include only high-quality data in the
analysis, the quality of each individual cDNA spot was calculated as
previously described [1]. Spots with an average quality across all
samples less than 0.95 were excluded from the analysis. For
neuroblastoma data, a total of 37,668 clones representing 33180
Unigene clusters passed this quality filter. For neuroblastoma data on
Affymetrix gene chip, we exported .CEL files from Affymetrix GCOS
software and normalized in dChip [17] to the median intensity using
the PM-only model. To get Affymetrix gene expression ratios, the
expression values of samples obtained from dChip normalization
process were divided by themedian value of the whole array. We used
10% present call filter and removed the probe sets with the present
calls less than 10% across all samples; a total of 33,647 probes
representing 31,124 Unigene clusters remained for further analysis.

Data analysis

For comparison between neuroblastoma data from cDNA and
Affymetrix arrays we used UniGene cluster ID (Build No. 191) as the
common identifier between the platforms. In case of multiple
probes representing the same Unigene cluster, the probe with the
top correlation (Pearson correlation) between cDNA and Affymetrix
arrays was kept for the analysis. A total of 12442 Unigenes were
common to both platforms and used for the analysis. The data was
log2-transformed and z-score normalization was performed across
samples for each gene separately in each data set. The two data sets
were then combined using the common identifier for prognosis
analysis. For the published data set by Asgharzadeh et al. [4], we
extracted the data from Gene Expression Omnibus (GEO Accession
Please cite this article as: Q.-R. Chen, et al., An integrated cross-platfo
doi:10.1016/j.ygeno.2008.05.014
Number GSE3446; http://www.ncbi.nlm.nih.gov/geo/), which
included 102 samples (56 samples have no disease relapse for at
least 5 years from diagnosis; 46 samples have disease relapse). They
are all metastatic neuroblastoma without MYCN amplification. The
data has been normalized by authors; therefore, we directly used
the data for the analysis. A two-way ANOVA was applied to quantify
the impact of platform and prognosis on gene expression. Gene
ontology (GO) analysis was performed using EASE tool from David
bioinformatics resources (http://david.abcc.ncifcrf.gov/). The whole
set of 12442 genes was used as the background list. The list of
genes with high expression in good or poor prognosis group was
run separately to evaluate the enrichment of GO categories
represented in each gene list.

Analysis using architecture of artificial neural networks

We used principal component analysis and reduced the dimen-
sionality of the data to the top 10 principal components (PCs) as
inputs for ANNs. This procedure reduced the number of variables to
10 to avoid overfitting the data which occurs when the number of
variables exceeds the number of samples. We used feed-forward
resilient backpropagation multilayer perceptron ANNs [1,18] (coded
in Matlab, The Mathworks, Natick, MA) with 3 layers: an input layer
of the top 10 PCs of the data, a hidden layer with 5 nodes, and an
output layer generating a committee vote that discriminates two
classes (i.e., good- and poor-outcome groups). Average ANN
committee votes were used to classify samples, and 0.5 was used
as the decision boundary for ANN prediction throughout the study.
The ideal vote was 0 for the good-outcome group (alive), and 1 for
the poor-outcome group (dead). We trained the ANNs and predicted
NB outcomes using an 8-fold cross-validation scheme in all analyses
similar as described previously [1].

Statistical analysis for evaluation of prognosis in survival

The probability of survival was calculated using the Kaplan-Meier
method, and the significance of the difference between Kaplan-Meier
curves was calculated using the log-rank test.

Web-based database

We have released the gene expression data of 42 neuroblastoma
samples generated on both cDNA array and Affymetrix U133AB set
platforms in an online searchable database (http://pob.abcc.ncifcrf.
gov/cgi-bin/JK). The two-way ANOVA analysis results as well as ANN
ranking information were also included in the database. The web
interface offers a broad variety of options for data query and
visualization.
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