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ABSTRACT

Currently, patients with neuroblastoma are classified into risk groups
(e.g., according to the Children’s Oncology Group risk-stratification) to
guide physicians in the choice of the most appropriate therapy. Despite
this careful stratification, the survival rate for patients with high-risk
neuroblastoma remains <30%, and it is not possible to predict which of
these high-risk patients will survive or succumb to the disease. Therefore,
we have performed gene expression profiling using cDNA microarrays
containing 42,578 clones and used artificial neural networksto develop an
accurate predictor of survival for each individual patient with neuroblas-
toma. Using principal component analysis we found that neuroblastoma
tumors exhibited inherent prognostic specific gene expression profiles.
Subsequent artificial neural network-based prognosis prediction using
expression levels of all 37,920 good-quality clones achieved 88% accuracy.
Moreover, using an artificial neural network-based gene minimization
strategy in a separate analysis we identified 19 genes, including 2 prog-
nostic markers reported previously, MYCN and CD44, which correctly
predicted outcome for 98% of these patients. In addition, these 19 pre-
dictor genes were able to additionally partition Children’s Oncology
Group-stratified high-risk patientsinto two subgroups according to their
survival status (P = 0.0005). Our findings provide evidence of a gene
expression signature that can predict prognosis independent of currently
known risk factors and could assist physicians in the individual manage-
ment of patients with high-risk neuroblastoma.

INTRODUCTION

Neuroblastoma is the most common solid extracranial tumor of
childhood and is derived from the sympathetic nervous system. Pa-
tients in North America are currently stratified by the Children’s
Oncology Group into high, intermediate, and low risk based on age,
tumor staging, Shimada histology, MYCN amplification, and DNA
ploidy (1). Patients <1 year of age or with lower stage diseases
(International Neuroblastoma Staging System stages 1 and 2) usually
have better outcome than older patients or those with advanced stage
diseases (International Neuroblastoma Staging System stages 3 and
4). Certain consistent cytogenetic changes, including gain of 2p24 and
17q and loss of heterozygosity at 1p36 have been associated with a
more aggressive phenotype (2, 3). The MYCN gene, located on 2p24,
is amplified in ~22% of al neuroblastoma patients (4) and is an
independent predictor for poor prognosis, especialy for patients >1
year of age. Although other genes, such as TRKA, TRKB, hTERT,
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BCL-2, caspases, and FYN (4, 5) have been associated with neuro-
blastoma prognosis, they all lack the predictive power of MYCN and
are not used currently in clinical practice. High-risk patients compose
~50% of al neuroblastoma cases; however, despite significant im-
provement in the therapy of neuroblastoma using neoadjuvant chem-
otherapy, surgery, and radiation, the desath rate for these patients
remains at 70% (6). Although the Children’s Oncology Group risk
stratification has been carefully developed to take into account the
above risk factors, it is primarily used to guide therapy and does not
predict which individual patients will be cured from the disease.

DNA microarray technology has been proven to be an efficacious
tool to molecularly classify cancers, to predict prognosis, and to
identify genes that are potential therapeutic molecular targets (7—12).
We have demonstrated previously that the combination of gene ex-
pression profiling and artificial neural networks is a powerful method
that can accurately diagnose certain pediatric cancers including neu-
roblastoma (7). In this current study, we used gene expression profiles
from cDNA microarrays to predict the outcome and identify an
optimal gene set in patients with neuroblastoma using artificial neural
networks.

MATERIALS AND METHODS

Tumor Samples. Fifty-six pretreatment primary neuroblastoma tumor
samples from 49 neuroblastoma patients with outcome information were
obtained retrospectively from three sources presenting between 1992 and 2000
(Table 1). All of the patients were treated according to local or national
guidelines that followed similar protocols, which included “wait-and-see” after
surgery or combinations of vincristine, doxorubicin, carboplatin, cisplatin,
cyclophosphamide, melphalan, and etoposide, depending on the risk factors.
All of the samples were anonymized, and our protocol was deemed exempt
from the NIH Multiple Project Assurance. Pretreatment tumor samples were
snap-frozen in liquid nitrogen after removal. Tumors were diagnosed as
neuroblastoma by local centers experienced in the management of these
cancers. Patients were divided into two outcome groups: the “good-outcome”
group had event-free survival (i.e., neither relapse nor neuroblastoma progres-
sion) for at least 3 years (n = 30), and “poor-outcome” died due to neuro-
blastoma disease (n = 19). The median age for the good-outcome group was
0.9 years (range from 0.1 to 4.6 years) and for the poor-outcome group was 2.8
years (range from 0.8 to 10.5 years; Table 1).

RNA Extraction. Total RNA was extracted according to the published
protocols (13). We used an Agilent BioAnayzer 2100 (Agilent, Palo Alto, CA)
to assess the integrity of total RNA from tumors. Total RNA from seven
human cancer cell lines (CHP212, RD, Hel.a, A204, K562, RDES, and CA46)
was pooled in equal portions to constitute a reference RNA, which was used
in al of the cDNA microarrray experiments.

RNA Amplification and Labeling of cDNA. mRNA was amplified one
round using a modified Eberwine RNA amplification procedure (14). Next, an
indirect fluorescent-labeling method was used to label cDNA as described by
Hegde et al. (15). In brief, aminoallyl-dUTP (Sigma-Aldrich, St. Louis, MO)
was first incorporated into cDNA in a reverse transcription reaction in which
amplified antisense RNA was converted into cDNA by Superscript |1 reverse
transcriptase enzyme (Invitrogen, Grand Island, NY) according to the manu-
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Table 1 Neuroblastoma samples used in the study and ANN prognostic prediction

MYCN Top 19 genes
Sample  Year of  Sample Age at INSS amplification Shimada COGrisk  Yearsof All 37920 clones ave ANN ANN predicted Clinical
label diagnosis source*  diagnosis (yrs)  stage status histology dtratification  survival ave ANN vote vote outcome outcome
NB1* 1998 2 0.3 1 NA F L 51 — 0.02 A A
NB2? 1997 2 0.9 4 NA F | 5.9 — 0.02 A A
NB3® 1998 2 12 4 NA F H 5.7 — 0.01 A A
NB4* 1997 2 14 4 NA F H 6.7 — 0.02 A A
NB7 1998 2 13 1 NA — L 52 0.06 0.03 A A
NB14 2000 2 0.9 4 AMP — H 32 0.18 0.05 A A
NB15 1999 2 0.9 2 NA — L 3.9 0.03 0.02 A A
NB18 2000 2 1.8 2 NA — L 14 0.72 0.95 D D
NB21 2000 2 5.2 4 AMP — H 0.6 0.92 0.99 D D
NB27 2000 2 10.5 4 AMP UF H 14 0.36 0.97 D D
NB29* 1998 2 0.3 1 NA F L 51 0.04 0.02 A A
NB30? 1997 2 0.9 4 NA F | 5.9 0.05 0.01 A A
NB31* 1997 2 14 4 NA F H 6.7 0.04 0.02 A A
NB32® 1998 2 1.2 4 NA F H 5.7 0.05 0.02 A A
NB61 1997 2 14 3 NA F | 6.3 0.22 0.2 A A
NBG69 1992 2 4.4 4 NA — H 0.5 0.16 0.8 D D
NB75 1998 2 1 3 AMP F H 3 0.89 0.99 D D
NB77 1994 2 0.2 1 NA — L 9.7 0.07 0.01 A A
NB79 1997 2 2.8 4 AMP — H 15 0.9 0.99 D D
NB205 1995 1 3.9 4 NA — H 23 0.52 0.84 D D
NB207° 1995 1 44 4 NA — H 31 — 0.98 D D
NB208 1995 1 0.8 1 NA F L 4.8 0.11 0.02 A A
NB209°¢ 1995 1 1.2 4 NA UF H 1 — 0.98 D D
NB210” 1996 1 23 4 NA UF H 11 — 0.97 D D
NB216 1996 1 0.6 3 NA — | 6.8 0.05 0.02 A A
NB231 1998 1 0.5 2 NA F L 4 0.04 0.02 A A
NB237 1999 1 41 1 NA F L 32 0.14 0.11 A A
NB254 2000 3 2.6 4 AMP — H 18 0.88 0.98 D D
NB255 1999 3 0.5 2 NA — L 4 0.71 0.24 A A
NB266 1996 3 2 4 AMP — H 0 0.63 0.98 D D
NB273° 1995 1 4.4 4 NA — H 31 0.84 0.96 D D
NB275° 1995 1 1.2 4 NA UF H 1 0.94 0.99 D D
NB276” 1996 1 23 4 NA UF H 11 057 0.98 D D
NB278 1999 1 1.7 4 AMP UF H 0.8 0.85 0.94 D D
NB283 1999 1 55 4 NA UF H 4 0.45 0.9 D D
NB8 1998 2 46 4 NA — H 1.8 0.63 0.97 D D
NB9 1996 2 11 1 NA — L 71 0.04 0.02 A A
NB17 2000 2 1.2 1 NA F L 815 0.17 0.03 A A
NB24 2000 2 0.6 4 NA F | 3 0.08 0.03 A A
NB33 1998 2 14 1 NA F L 4.8 0.05 0.02 A A
NB34 1997 2 1.2 1 NA F L 52 0.04 0.02 A A
NB35 1997 2 26 4 NA — H 6.5 0.13 0.07 A A
NB64 1998 2 0.6 4 NA — | 5.7 0.81 0.02 A A
NB72 1994 2 & 8 AMP — H 1 0.94 0.98 D D
NB201 1994 1 15 3 NA UF H 7.4 0.04 0.08 A A
NB206 1995 1 33 4 NA UF H 5.8 0.82 0.96 D D
NB215 1996 1 1.2 8 NA F | 7.3 0.04 0.03 A A
NB220 1997 1 04 2 NA F L 6 0.06 0.04 A A
NB221 1997 1 0.4 1 NA F L 5.7 0.09 0.02 A A
NB232 1998 1 0.1 2 NA F L 43 0.06 0.04 A A
NB235 1999 1 04 2 NA F L 32 0.15 0.03 A A
NB238 1999 1 12 1 NA F L 3 0.04 0.02 A A
NB251 2000 3 0.8 4 AMP — H 0.5 0.69 0.91 D D
NB265 1996 3 18 4 AMP — H 2 0.78 0.97 D D
NB269 1997 3 0.8 4 NA — | 5.3 0.04 0.07 A A
NB282 1999 1 4.6 4 NA UF H &3 0.91 0.58 D A

NOTE. All samples (except NB1, NB2, NB3, NB4, NB207, NB209, and NB210) were used in the leave-one-out ANN analysis. Samples highlighted in gray are the 21 test samples,
and the rest were used for training in the clone optimization procedure. There were 7 replicated samples, marked by the numbers in superscript.

Abbreviations: INSS, International Neuroblastoma Staging System; AMP, amplification; NA, not amplified; F, favorable; —, not known; UF, unfavorable; COG, Children's
Oncology Group; H, high-risk; I, intermediate-risk; L, low-risk; ave ANN vote, average ANN committee votes; ANN prediction, average ANN vote <0.5 = A (alive) and >0.5 = D

(dead); A, aive without event; D, deceased due to neuroblastoma disease.

* Sample source: 1, Cooperative Human Tissue Network (Ohio); 2, German Cancer Research Center; 3, The Children’s Hospital at Westmead (Australia).

facturer’ sinstructions. Second, unincorporated aminoallyl-dUTP was removed
with Qiagen PCR purification kits (Qiagen, Vaencia, CA) according to the
manufacturer’s instructions. Third, monoreactive-Cye5 or Cye3 dyes (Amer-
shamPharmacia, Piscataway, NJ) were conjugated with the aminoallyl-dUTP
on the cDNA. Fluorescent-labeled cDNA was purified with Qiagen PCR
purification kits.

Fabrication of cDNA Microarrays, Hybridization, Image Acquisition,
and Image Analysis. Sequence-verified cDNA libraries were purchased from
Research Genetics (Huntsville, AL), and a total of 42,578 cDNA clones,
representing 25,933 unique genes (UniGene clusters; 13,606 known genes and
12,327 unknown expressed sequence tags), were printed on microarrays using
a BioRobotics MicroGrid Il spotter (Harvard Bioscience, Holliston, MA).

Fabrication, hybridization, and washing of microarrays were performed as
described by Hegde et al. (15). Images were acquired by an Agilent DNA
microarray scanner (Agilent, Palo Alto, CA) and analyzed using the Microar-
ray Suite program as described (16), coded in IPLab (Scanalytics, Fair-
fax, VA).

Data Normalization and Filtering. Gene expression ratios between tumor
RNA and reference RNA on each microarray were normalized using a pin-
based normalization method modified from Chen et al. (16). To include only
high-quality datain the analysis, the quality of each individual cDNA spot was
calculated according to Chen et al. (17). Next, spots with an average quality
across all of the samples <0.95 were excluded from all of the analyses. There
were 37,920 (90.3%) clones that passed this quality filter.
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Architecture of Artificial Neural Networks. First, we used principal Prediction Using a Leave-One-Out Strategy. To test the generalizibility
component analysis and reduced the dimensionality of the data to the top 10  of the artificial neural network approach, we first performed a leave-one-out
principal components as inputs for artificial neural networks. This procedure  prediction strategy (Fig. 1A), where we left out each sample (of the 49 unique
reduced the number of variables from 37,920 to 10 to avoid over-fitting the  samples) one time during the training of artificial neural networks and tested
data, which occurs when the number of variables exceeds the number of it as an independent sample to predict the outcomes with all of the quality-
samples. We used feed-forward resilient back-propagation multilayer per-  filtered clones (n = 37,920) without additional clone selection.
ceptron artificial neural networks (coded in Matlab, The Mathworks, Natick, Identification of Prognostic Signature Using Training and Test Sets. To
MA) with three layers: an input layer of the top 10 principal components of the  identify the prognostic genes, we performed a separate artificial neural network
data (Fig. 1, A and B) or the gene expression ratios of each cDNA spot (for the  analysis using a gene minimization procedure as described by Khan et al. (7).
minimized gene set, see Fig. 1B); a hidden layer with 3 nodes; and an output  In brief, the 7 replicate samples were placed in the training set, and the
layer generating a committee vote that discriminates two classes (i.e., good-  remaining samples were then randomly partitioned into training (n = 35) and
and poor-outcome groups). Average artificial neural network committee votes  testing (n = 21) sets. None of the replicate samples were included in the test
were used to classify samples, and 0.5 was used as the decision boundary for  set to ensure that the selected genes did not bias the prediction outputs of the
artificial neural network prediction throughout the study. The ideal votewas0  trained artificial neural networks. The minima number of clones for outcome
for the good-outcome group (alive) and 1 for the poor-outcome group (dead).  prediction was identified using only the training set. Quality-filtered clones
We trained the artificial neural networks using an 8-fold cross-validation  werefirst ranked by determining the sensitivity of prediction of the 35 training
scheme in al of the analyses similar to those described previously (7). samples with respect to a change in the gene expression level of each clone.
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Fig. 1. Workflow diagrams. A, workflow for a complete leave-one-out artificial neural network (ANN) analysis using all 37,920 clones. Gene expression profiling was performed
on tumors from 49 neuroblastoma (NB) patients (Alive, n = 30; Deceased, n = 19) using cDNA microarrays containing 42,578 clones. After a quality filter, 37,920 clones were used
as a data matrix of high quality cDNA measurements for further data analysis. Principal component analysis was used to reduce the dimensionality of the data and reduce noise. The
top 10 principal components were used for input to the ANN. One sample was |eft out as an independent test sample, and the ANNs were trained using the remaining 48 NB samples.
ANN training scheme (gray box). 1. All remaining neuroblastoma samples were randomly partitioned into eight groups. 2. One of the eight groups (containing 6 samples) was selected
as a validation set, whereas the remaining 7 groups (42 samples) were used to train the network. 3 and 4. The training weights were iteratively adjusted for 100 cycles (epochs). 5.
The ANN output (01, where O = ideal good-outcome and 1 = ideal poor-outcome) was calculated for each sample in the validation set. 6. A different validation set was selected
from the same partitioning in 1, and the remaining seven groups were used for training. Steps 2—6 were repeated until each of the eight groups from 1 had been used as a validation
set exactly one time. 7. The samples were randomly repartitioned into eight new groups, and steps 2—6 were repeated. Sample partitioning was performed 100 times in total. Thus,
steps 1-6 were repeated 100 times. Eight hundred ANN models were, thus, trained and were used to predict the left out test sample. This scheme was repeated for each left out test
sample. B, identifying prognostic gene expression signature and outcome prediction. Fifty-six neuroblastoma samples (7 replicates were added to the training group to examine the
reproducibility of the results) were partitioned into atraining (n = 35) and an independent test (n = 21) set. Principal component analysis was again performed, and ANNswere retrained
using the 35 training samples based on the ANN training scheme detailed in the gray box in A. Gene minimization. Each of the input clones was ranked according to its importance
to the prediction of ANNSs (7). Increasing numbers of the top-ranked clones were used to train ANNs, and the resulting classification error was monitored. The minimal number of clones
that yielded the minimal classification error (Fig. 3A) was identified, and the top-ranked clones for each gene were used to retrain the ANNs and predict the 21 test samples without
performing a principal component analysis.
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Then, using increasing numbers of the top artificial neural network-ranked
clones, we identified the minimum number of clones that generated minimum
prediction errors (Fig. 1B). Where multiple clones represented one gene, we
selected the top-ranked clone to obtain a minimal predictor gene set. We
recalibrated the artificial neural networks using the expression ratios of these
genes with only the training samples (without performing principal component
analysis). Finally, we predicted the surviva status of the test samples using the
trained artificial neura networks (Fig. 1B).

Statistical Analysis for Survival. Survival length was calculated for the
49 unique neuroblastoma patients from date of diagnosis until date of death
or last follow-up as appropriate. The probability of survival and signifi-
cance was calculated using the Kaplan-Meier and Mantel-Haenszel meth-
ods, respectively (18, 19). The Cox proportional hazards model (20) was
used to determine the hazard ratios and confidence intervals (21) for
survival between the dichotomized groups of patients and was used to
assess which factors were jointly significant in the association with survival
for the 24 high-risk patients (20). The Cox model parameters (b,) were
converted to hazard ratios by computing exp(b;), where exp(a) = 2.7183%
The 95% confidence interval for the hazard ratio was computed as [exp-
(biL), exp(b;y)] where b, = b;-1.96 [estimated SE (b;)] and b, = b, = 1.96

A ' B

C All 37920 Clones Leave-One-Out
1
0_9_|_|_""1
0.8 Good Signature
0.7
2 06
§ 0.5
o 0.4
B g
0.2
Poor Signature
%1 P <0.0001
00 12 24 36 48 60 72 84 96 108 120
No at Risk Survival Duration (months)

E%?{am,ew 14 7 5 3 2 0 0 0 0 O
§oodre 30 29 28 28 21 15 9 4 1 1 0

[estimated SE (b;)] (21). In this study, the hazard ratio indicates the risk
associated with neuroblastoma-caused death while being in a greater-risk
category compared with that of being in the lower-risk category. Using the
procedure described by Simon and Altman (22), a likelihood ratio test was
used to assess for importance of the microarray prediction after adjusting
for standard prognostic factors such as MYCN amplification, age, or stage.

RESULTS

Prediction of Outcome Using the Global Expression Profiles of
All of the Clones. Visudization of al 56 of the neuroblastoma
samples using principal component analysis of al of the quality-
filtered 37,920 clones revealed neuroblastoma samples generally
grouped according to their clinical outcomes (Fig. 2A), clearly indi-
cating a pre-existent prognostic signature. To demonstrate the gener-
aizability of the artificial neural network approach, we next tested the
ability of artificia neural networks to predict prognosis of the 49
unique individuals (excluding 7 replicated samples) with al 37,920
clones using a conservative unbiased leave-one-out prediction strat-
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Fig. 2. Predicting the outcomes of neuroblastoma without gene selection. A, plot of the top three principal components (PC) of the 56 neuroblastoma samples using all quality-filtered
37,920 clones demonstrates some separation according to the clinical outcome. Red spheres represent poor-outcome patients, whereas blue spheres represent good-outcome patients.
B, artificial neural network voting results for outcome prediction of the 49 unique neuroblastoma patients using 37,920 clones without any additional clone selection in aleave-one-out
prediction scheme. (Samples labels: &, stage; NA, MYCN nonamplified; A, MYCN amplified, followed by sample name). Seven replicated samples (NB1, NB2, NB3, NB4, NB207,
NB209, and NB210) were excluded for thisanalysis. Symbols, ANN average committee votes for each sample, whereas the length of the horizontal lines represents the SE. Red triangles,
poor-outcome, and blue circles, good-outcome neuroblastomas. Vertical line at 0.5 is the decision boundary for outcome prediction (i.e., good signature <0.5, poor signature >0.5).
C, Kaplan-Meier curves of survival probability for the 49 neuroblastoma patients derived from the resultsin B. D, Kaplan-Meier curves of survival probability for the 49 neuroblastoma

patients using the current Children’s Oncology Group risk stratification.
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Table 2 Performance of ANN prediction

Sensitivity (%)

Specificity (%)

Positive predictive value (%) Positive predictive value (%)

ANN prediction poor-outcome poor-outcome poor-outcome good-outcome
Leave-one-out with al clones (n = 49) 84 90 84 90
19 genes (test samples: n = 21) 100 94 83 100
19 genes (n = 49) 100 97 95 100

egy (Fig. 1A). We found that the artificial neural networks correctly
predicted 16 of 19 poor-outcome and 27 of 30 good-outcome cases
(Fig. 2B). This corresponds to a sensitivity of 84% and specificity of
90% for the poor-outcome patients, with a positive predictive value of
84% for the poor- and 90% for the good-outcome patients (Table 2).
The Kaplan-Meier curves demonstrated that patients with poor and
good gene expression signatures as identified by the artificial neural
networks had significantly different survival probabilities
(P < 0.0001, see Fig. 2C). The Cox proportional hazard ratio for the
risk of death associated with the poor signature was 16.1 (95%
confidence interval, 4.6 to 56.9, P < 0.0001), which was higher than
those of al of the other risk factors we examined (stage, MYCN
amplification, and age) except Shimada histology and was comparable
with the Children's Oncology Group risk stratification (Table 3;
Fig. 2D).

Identifying Prognostic Gene Expression Signature. To identify
the optimal set of genes that results in the minimum classification
errors, we performed a gene minimization procedure in a separate
artificial neural network analysis using training and test sets as de-
scribed previously (7). We first randomly partitioned all 56 of the
samplesinto training (n = 35) and testing sets (n = 21) and used only
the training set for the gene selection algorithm. We observed that the
top 24 artificial neural network-ranked clones resulted in the minimal
classification error (Fig. 3A). These 24 clones represented 19 unique
genes, and we took the top-ranked clone for each gene and used this
as our minimal gene set. When we visualized the overall variance of
these genes using principa component analysis on al 56 of the
samples we found a clearer separation of the poor- from the good-

Table 3 Univariate proportional hazard analysis for the risk of NB-related death

Variable HR 95% ClI Log-rank P
All NB samples (n = 49)

All 37920 Clones (poor signature versus good 16.1 4.6t056.9 <0.0001
signature)

Top 19 ANN-ranked genes (poor signature oo* <0.0001
versus good signature)

COG risk dtratification (high risk versuslow  29.7  4.0t0222.9 <0.0001
and intermediate risk)

COG risk dtratification (high and intermediate 13.6 1.8t0101.7 0.0009
risk versus low risk)

COG risk stratification (high risk versuslow  23.2  3.1t0175.9 <0.0001
risk)

INSS stage (stage 4 versus stages 1-3) 71 21to24.2 0.0003

INSS stage (stage 3 and 4 versus stage 1 136 1.8to101.7 0.0009
and 2)

MYCN status (amplified versus not amplified) 9.8 3.6t026.7 <0.0001

Age (>1 year versus <1 year) 123 16t0925 0.0017

Shimada histology (unfavorable versus 199 24t0166.1 0.0001
favorable) (n = 27)

High-risk samples (n = 24)

MYCN status (amplified versus not amplified) 3.5 1.2t010.0 0.01

Top 19 ANN-ranked genes (poor signature 0% 0.0005
versus good signature)

All 37920 clones (poor signature versusgood 53 1.4t019.4 0.0067

signature)

NOTE. The Cox proportional hazards model was used to calculate all HRs and Cls. P
values were calculated using the Mantel-Haenszel method.

Abbreviations: NB, neuroblastoma; COG, Children’s Oncology Group; INSS, Inter-
national Neuroblastoma Staging System; HR, hazard ratio; Cl, confidence interval.

* These hazard ratios are infinite, because none of the patients predicted to have
good-outcome experienced an event (i.e., death).

outcome samples when compared with the principal component anal-
ysis for all 37,920 clones (Fig. 3B).

We next recalibrated the artificial neural networks with the 35
training samples using the expression ratios for the 19 genes and
correctly predicted the outcomes for 5 of 5 poor-outcome and 15 of 16
good-outcome patients in the independent test set, corresponding to a
sensitivity of 100% and a specificity of 94% for predicting poor
outcome (Fig. 3C; Table 2). The positive predictive values were 83%
and 100% for the poor- and good-outcome groups, respectively, for
the test samples and 95% and 100% for all of the patients (Table 2).
The Kaplan-Meier curves demonstrated that patients with good and
poor signatures based on the expression ratios of the 19 genes had
significantly different survival probabilities (P < 0.0001, see Fig.
3D). Furthermore, no patients died in the good signature group; thus,
the hazard ratio for death risk was infinite (Table 3).

The top 24 artificial neural network-ranked clones represent 19
unique genes including 12 known genes and 7 expressed sequence
tags. Four of the known genes, DLK1, ARHI, PRSS3, and SLIT3, were
represented by two or more independent cDNA clones (Fig. 4A) and,
hence, acted as internal validation for these genes. We also validated
al 12 of the known genes by quantified reverse transcription-PCR
(data not shown). Nine of the genes were up-regulated and 10 down-
regulated in the poor- compared with the good-outcome group (Fig. 4,
Aand B). To our knowledge, al of the genes, except MYCN and CD44
(23-25), have not been associated previously with neuroblastoma
prognosis.

Outcome Prediction for High-Risk Patients. We next investi-
gated whether the gene expression signatures could predict the sur-
vival status of those patients in our study that are currently stratified
as high risk (see Table 1). From our 49 patients, 24 were high risk
(Table 1). The Kaplan-Meier curves demonstrated that artificial neural
networks were able to additionally partition these high-risk patients
according to their clinical outcomes using all 37,920 of the quality-
filtered clones (P = 0.0067), as well as the top 19 artificial neural
network-ranked genes (P = 0.0005; Fig. 5, Aand B). Asshown in Fig.
5B, the top 19 artificial neural network-ranked genes were able to
correctly predict all 5 with good signature as surviving and 18 of 19
with poor signature as dying, suggesting a potential benefit for pre-
dicting outcomein these high-risk patients. The hazard ratio was again
infinite, because all of the patients that we predicted to have a good
outcome survived (Table 3).

To determine whether the gene expression signatures provide ad-
ditional predictive power over the conventiona risk factors, we first
created a Cox model using age, stage, and MYCN amplification
excluding the artificial neural network prediction results. The model
showed that MYCN amplification (P = 0.0064) was the only signif-
icant factor (i.e., P < 0.05, see Fig. 5C). Therefore, we built another
multivariate model using MYCN amplification and the prediction
results based on all 37,920 clones (Fig. 5D). (We used the artificial
neural network results based on the 37,920 clones, because there were
no deaths in the good signature group using the 19 genes, and in these
circumstances it is not possible to create models where the hazard
ratios are infinite). Applying the likelihood ratio test, we found that
prediction by al of the clones added predictive ability to the model
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Fig. 3. Outcome prediction using top artificial neural network (ANN)-ranked genes. A, clone minimization plot for ANN prediction. ANNs were first trained using the 35 training
samples, and all 37,920 clones were ranked according to their importance to the ANN prediction (7). Then ANNs were trained with increasing numbers of the top ANN-ranked clones,
and average prediction errors were calculated for the 35 training samples. The minimal number of clones that generated the minimal error rate was 24 (arrow), representing 19 unique
genes. Bars, =SE of number of misclassifications for the validation group during ANN training. B, plot of the top 3 principal components of the 56 neuroblastoma samples using the
top 19 genes (duplicated clones of the same gene were removed, and the top-ranked clone for each gene was used in the ANN prediction) demonstrates a clear separation according
to the clinical outcome. Red spheres, poor-outcome patients, whereas blue spheres, good-outcome patients. C, ANN committee vote results of the 56 samples using the top 19
ANN-ranked genes. ANNs were retrained using the 35 training samples (including all of the replicated samples) with the top 19 ANN-ranked genes directly without PCA, and these
trained models were used to predict the 21 independent test samples. Horizontal dotted line divides the test (above the line) from the training samples. D. Kaplan-Meier curves for
survival probability of the 49 patients were derived from the ANN prediction using the 19 genes in C.

(P = 0.012). Additionally, the Kaplan-Meier curves (Fig. 5, E and F)
illustrate that artificial neural network prediction can additionally
separate the MYCN nonamplified patients according to their survival
status based on either al of the clones (P = 0.047) or in particular the
19 genes (P = 0.0076, see Fig. 5F).

DISCUSSION

We have developed an artificial neural network-based method for
predicting the outcome of patients with neuroblastoma using the
expression profiles of only 19 genes that provides a significant im-
provement in prediction over the current known risk factors. More-
over, we found that the most important advantage of our approach was
the ability to additionally partition Children’s Oncology Group strat-
ified high-risk patients, in particular those without MYCN amplifica-
tion, into two subgroups according to their survival status. The ability
to predict the outcome of individual patients with high-risk neuro-
blastoma at initial diagnosis using gene expression signatures has
major clinical implications, because ~70% of the patients in this
group (~50% of al neuroblastoma patients) succumb to the disease

(2). Firstly, patients that are identified to have a poor signature, i.e.,
predicted to die if given conventional therapy, may directly benefit
from the newer therapeutic strategy trials that are currently under
investigation by the cooperative study groups such as Children’s
Oncology Group. Secondly, because treatment-related death rates
have been reported to be as high as 23% (26), it may be possible to
design future dose intensity reduction trials to minimize therapy-
related morbidity and mortality for the high-risk patients who have a
good signature. An example of such a patient in the latter category is
NB14 (stage 4, MYCN-amplified) who, despite his high-risk status,
experienced event-free survival for >3 years as was predicted by our
artificial neural networks. Although the survival rate for patients with
Children’s Oncology Group-stratified low-risk disease is 95%, our
approach may identify the few patients predicted to have a poor
outcome by the artificial neural networks who may benefit from more
aggressive therapy. For instance, although case NB18 was classified
as low-risk (based on stage 2 and MYCN not amplified), our artificial
neural networks predicted this sample as poor-outcome, and this
patient died within 1.5 years after diagnosis. These results indicate the
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Fig. 4. Expression levels of the top 19 ANN-ranked genesin the 56 neuroblastoma samples. A, expression level of each gene waslogged (base 2) and mean-centered, and represented
by pseudo-colors according to the scale shown on the bottom right. A red color corresponds to up-regulation, and a green color corresponds to down-regulation as compared with the
mean. On theright are the artificial neural network (ANN)-ranked order, chromosomal location, IMAGE Ids, gene symbols, and the hierarchical clustering dendrogram. Red bars below
the sample labels mark poor-outcome patients, and blue bars below the sample labels mark good-outcome patients. *, genes that have been reported previously to be associated with
neuroblastoma prognosis. B, differentially expressed genes in good- and poor-prognostic groups. Box and whisker plots of the mean centered expression levels of the 12 known genes
identified in this study. Boxes represent the upper and lower quartiles of the data. The black horizontal line within the box denotes the median. The whiskers extending above and below
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potential utility of using our approach for individualized management
of patients with cancer. However, they need to be interpreted with
some caution in view of the limited number of subjects in our study
and some heterogeneity of their treatments, and confirmation is re-
quired in larger, prospective trials before these predictor genes are
used in the clinic.

Because there was some overlap in the expression levels of the top
19 artificial neural network-ranked genes between the prognostic
groups, the prospect of identifying a single gene that can accurately
predict outcome is unlikely. Thus, a combinatorial approach using
several genes and artificial machine learning algorithms was neces-
sary for accurate outcome prediction. Among these 19 genes, 2
(MYCN and CD44) have been reported to correlate with neuroblas-
toma prognosis (23-25), thus validating our ability to identify prog-
nostic-specific genes. MYCN amplification is an established marker
for high stage and poor outcome (23) and plays a critica role in the
aggressive phenotype of neuroblastoma tumors (27, 28). Our analysis
confirmed MYCN as an important prognostic marker (ranked 16 of

19); however, the median expression level of this gene was similar in
the two groups, in agreement with previous reports that MYCN ex-
pression levels are not consistently correlated with survival in patients
with nonamplified tumors (29-31). MYCN amplification is currently
the only molecular marker used for risk stratification; however, it
cannot be used as the sole risk predictor, because only 22% of
neuroblastoma patients have this molecular trait.

Of the 19 predictor genes, 8 of the 12 known genes have been
reported previously to be expressed in neural tissue. Of these, 5 were
up-regulated in the poor-outcome group (DLK1, PRSS3, ARC, SLIT3,
and MYCN), and 3 were down-regulated (CNR1, ROBO2, and
BTBD3). DLK1 (ranked number 1) is the human homologue of the
Drosophila Delta gene and is expressed by neuroblasts in the devel-
oping nervous system (32) as well as in neuroblastoma (33, 34). It is
a transmembrane protein that activates the Notch signaling pathway,
which has been shown to inhibit neuronal differentiation (35). Addi-
tionally, ARC (36), MYCN (37), and SLIT3 (38) are aso expressed
during neural development. The higher expression levels of these
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genes in the poor-outcome tumors suggest a more aggressive pheno-
type characterized by a less differentiated state, reminiscent of pro-
liferating and migrating neural crest progenitors. Intriguingly, we
observed the up-regulation of the neuron axon repellant gene, SLIT3,
with the down-regulation of one of its receptors, ROBO2, in the
poor-outcome group suggesting the possibility that these neuroblas-
toma cells secrete a substrate to repel connecting axons and poten-
tially prevent differentiation. The exact roles and how the interactions
of these genes confer an aggressive phenotype in neuroblastoma
require more detailed biological studies.

Of additional interest, the ARHI gene, which maps to 1p31, is a
maternally imprinted tumor suppressor gene implicated in ovarian and
breast cancer (39), possibly through methylation silencing (40), and is
among the down-regulated genes for the poor-outcome group. An
additional study of its role in tumorigenesis as a potential tumor
suppressor gene in neuroblastomais warranted particularly because of
its proximity to the 1p36 region, which is frequently deleted in
poor-outcome neuroblastoma patients.

We noted the absence of three prognostic related genes reported
previousy TRKA, TRKB, and FYN (5, 41, 42), among our 19 genes.
Unfortunately, TRKA was not on our microarrays, and TRKB and FYN
were not ranked within the top 500 clones by artificial neural net-
works. At this point, the predictive role of TRKA, TRKB, or FYN isnot
conclusive, and none are currently used to guide therapy.

In this study we have identified a small subset of 19 predictor genes

from a pool of 25,933 unique genes with the majority of these 19
genes showing a >2-fold average differential expression between
good- and poor-outcome tumors. This small number of genes can be
developed into cost-effective clinical assays for outcome prediction.
In addition, the products of 3 genes (DLK1, SLIT3, and PRSS3) are
secreted proteins, raising the possibility of using these as serum
markers for prognosis.

In this data set, our artificial neural network-based method provided
asignificant improvement in prediction over the current risk factorsin
patients with neuroblastoma. Moreover, the most important advantage
of our approach was the ability to additionally partition Children’s
Oncology Group-stratified high-risk patients, in particular those with-
out MYCN amplification, into two subgroups according to their sur-
vival status. These findings merit confirmation on larger, prospective
trials. We believe that our approach would allow physicians to tailor
therapy for each individual patient according to their molecular pro-
file, with the prospect of improving clinical outcome and survival
rates in patients with neuroblastoma.
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