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ABSTRACT: The application of artificial intelligence (AI) to microarray data
has been receiving much attention in recent years because of the possibility of
automated diagnosis in the near future. Studies have been published predicting
tumor type, estrogen receptor status, and prognosis using a variety of Al
algorithms. The performance of intelligent computing decisions based on gene
expression signatures is in some cases comparable to or better than the current
clinical decision schemas. The goal of these tools is not to make clinicians
obsolete, but rather to give clinicians one more tool in their armamentarium to
accurately diagnose and hence better treat cancer patients. Several such appli-
cations are summarized in this chapter, and some of the common pitfalls are
noted.
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INTRODUCTION

The widespread applications of cDNA and oligonucleotide microarrays, with
whole-genome expression scanning at >40,000 clones in a single experiment, have
heralded a new era of molecular genomics and, at the same time, are generating vast
amounts of data. There is promise of accurate diagnosis and prognosis, identification
of therapeutic targets, characterization of yet unknown genes, and personalized
chemotherapy guided by molecular expression signatures. Classification based on
gene expression signatures continues to be challenging in part due to the varied
microarray platforms, labeling methods, scanners, image analysis tools, as well as
classification algorithms currently available. Huge strides have been made over the
past few years to increase the quantity of clones printed on an array, and the quality
of RNA extraction, amplification, hybridization, and cDNA printing. Additionally,
an ever-increasing array of algorithms has been reported to analyze the data
produced from these high-quality, dense arrays.

Artificial intelligence (Al) is the term used to describe the ability of a computer
or machine to perform activities or make decisions that normally require human
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TABLE 1. Examples of unsupervised, supervised, and supervised learning data
analysis methods

Unsupervised Supervised Supervised learning
k-means t test ANN
Self-organizing maps ANOVA SVM
Hierarchical clustering Golub
KNN WGA
PCA Wilcoxon
MDS Kruskal-Wallis
Reshuffling TNoM

intelligence. Al has been successfully applied to problems ranging from distin-
guishing four types of small round blue-cell tumors! to predicting estrogen receptor
status in breast cancer® and a host of other applications,> 8 several of which will be
detailed later in this chapter. Al affords many significant benefits over its simplistic
clustering counterparts such as hierarchical clustering, k-means clustering, and
traditional statistical methods.

CLUSTERING VERSUS MACHINE LEARNING

Simple unsupervised clustering methods such as hierarchical clustering, principal
component analysis (PCA), and multidimensional scaling (MDS) allow the visual-
ization of data for the purpose of class discovery, or finding hitherto unknown rela-
tionships between samples or genes. On the other hand, supervised methods (see
TABLE 1) allow for class prediction and are useful tools that can cluster data sets into
meaningful groups and identify genes using a priori knowledge of the data such as
stage, diagnosis, tissue type, etc. (see refs. 9 and 10 for good reviews). Al methods
such as artificial neural networks (ANNs) or support vector machines (SVMs) are
highly specialized forms of supervised clustering. Generally, simple clustering
methods weight each input feature (or gene) the same, while ANNs and SVMs have
the ability to weight input features according to their relevance to the classification
scheme as determined through the learning process. The simpler methods cluster
samples based on the summation of all of the inputs, while ANNs and SVMs cluster
samples based on the collective effect of all of the input features. In addition, while
most of the simpler methods are linear, ANNs and SVMs can learn nonlinear
features of the input data. In most of the simpler clustering methods, either a sample
belongs to a cluster or it doesn’t; in contrast, in ANNs and SVMs, a continuous vari-
able (i.e., an average vote) predicts whether or not a sample belongs to a particular
cluster. This gives the ANN or SVM the freedom to conclude that a sample does not
belong to any of the known classes if its vote lies too close to the decision boundary.
This is advantageous, for example, if in a set of blinded test samples there exist
samples that belong to none of the known categories and have been added to deter-
mine the specificity of the network.! Another limitation of most of the nonlearning
methods is the way they treat more than two classification groups: in a one-verse-all
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manner. ANNs (but not SVMs) can simultaneously classify a sample set with more
than two a priori groups directly without having to resort to a one-verse-all method.
For the rest of the chapter, we will turn our attention to the technical aspects and
application of two particular forms of machine learning: feed-forward ANNs and
feed-forward SVMs.

ARTIFICIAL NEURAL NETWORKS

ANNSs are computer algorithms that model mammalian systems of decision
making using the mammalian neuron as a fundamental unit. If one thinks of “the
brain [as] a complex, nonlinear, and parallel computer (information processing
system)”,11 then it is logical to want to mimic the brain’s capacity to learn from
experience and make decisions. A neuron’s ability to respond to experiences and
hard-wire itself accordingly, thus adapting to its local environment, is commonly
referred to as the plasticity of the brain.

A neural network is a massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two respects:

(1) knowledge is acquired by the network from its environment through a
learning process;

(2) interneuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge.!!

Neural networks are powerful because of their massively parallel, distributed
structure and ability to learn and generalize. Generalization is the ability of a neural
network to predict an input that was not used for training.11 Generalization is vital
to the utility of a neural network. If generalization is not possible, then Al has done
little more than put known groups of samples into their corresponding groups. In this
way, it offers little more than simple hierarchical or k-means clustering. Several
properties of neural networks make them particularly powerful for the study of
microarray data. The nonlinearity property of a neural network allows it to learn and
adapt to nonlinear signals. This is important if the underlying signal is nonlinear, that
is, the effect of one gene on another may be in a nonlinear fashion due to a positive
feedback loop via a particular protein or transcriptional regulator. Input-output
mapping refers to a neural network’s ability to modify its synaptic weights through
observing a set of training samples to minimize the error between the input classes
and the predicted output classes. The concepts of adaptivity and error-minimization
are what make this input-output mapping possible.

A special form of feed-forward machine learning called support vector machines
(SVMs) has some interesting differences from feed-forward ANNSs. In essence, the
goal of an SVM is to calculate the hyperplane in n-dimensional feature space that
optimally separates two groups of samples. Feature space is a mapping of the
original data to a higher dimensional space. A sample is classified based on where it
lies in relation to the hyperplane. When more than two classes are being examined,
SVMs employ a one-verse-all strategy in conjunction with the hyperplane. In addi-
tion, the robustness of classification can be determined, in part, by the distance
between each sample and the hyperplane in n-dimensional space. It has been said
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that SVMs can overcome the “curse of dimensionality”. This is the unfavorable
situation where the number of tunable parameters is much larger than the number of
training samples and can lead to overfitting of the data and thus a nongeneralizable
classifier. Both SVMs and ANNs have been used in various contexts for pattern
recognition, including imaging, ECG, and biometric pattern recognition (e.g., voice,
retina, and palm).

APPLICATIONS

Classification of Small Round Blue-Cell Tumors

Khan et al.! performed the proof-of-principle study for predicting unknown
tumor samples using ANNs on gene expression data from a set of four small round
blue-cell tumors (SRBCTs). SRBCTs are a group of tumors that are difficult to
diagnose by routine histology and thus pose a significant challenge to the clinician
for making an accurate diagnosis and subsequent recommendation for therapy.
Accurate diagnosis is crucial because treatment, responses, and prognosis vary
greatly depending on the diagnosis. In this study, the training set for the ANNs
consisted of SRBCT tumors and cell lines across four tumor types: neuroblastoma
(NB), rhabdomyosarcoma (RMS), a subset of non-Hodgkin lymphoma (NHL), and
the Ewing’s family of sarcomas (EWS).

In this paper, they suggest a schema for the application of ANN for diagnostic
classification (F1G. 1a). Genes are first filtered for quality based on a quality metric
calculated by the image analysis software used to extract data from the scanned
microarray images. To avoid the “curse of dimensionality”, PCA is employed and
the first n-components can be used to train the network (in the manuscript, 10
components were used). To further ensure that the data are not overfitted, a cross-
validation scheme is employed as follows. The training samples are randomly parti-
tioned into groups, and one of these is used for validation and the rest for training.
By this way, several hundred network models are trained (F1G. 1b) and an average
vote can be calculated. Because a DNA microarray will typically monitor thousands
of genes, and a particular disease will generally affect the expression of on the order
of tens or hundreds of genes, the majority of the genes on a chip will not experience
significant change in expression. This means that as much as 90% of the measurements
on a chip represent noise rather than meaningful biological signal. Additionally, the
decision-making process of ANNSs is often considered as a “black box” with little
information available as to how models determine a particular “expression signature”.
For these reasons, they developed a method to identify the genes that contribute most
to a particular classification. After training the network as described above, the
sensitivity for each gene was calculated as the derivative of the output with respect
to the gene expression input. Genes with high sensitivity to the classification scheme
received a high rank and genes with low sensitivity to the classification received a
low rank. This can be understood functionally as the effect that a perturbation of a
particular gene’s expression ratio will have on the classification of each sample. If
the perturbation of a particular gene affects the classification result significantly,
then that gene receives a high rank. In contrast, if the perturbation of a particular
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FIGURE 1a. Example of application of ANN (with permission from ref. 1). The 88
experiments were quality filtered (1) and the dimension of the data set further reduced from
2308 to 10 by PCA (2). Next, the 63 training samples were randomly partitioned into 3
groups (3) and 1 of these groups was selected for validation (4). The network was trained
for 100 epochs using the 2 remaining groups (5). The samples in the validation group were
tested and a different group was selected for validation (6). This process (steps 4-6) was
repeated until each group was used for validation exactly one time. Then, the data were
repartitioned into 3 new random groups (3) and steps 4—6 repeated again. In total, the data
were repartitioned 1250 times (7), generating 3750 trained models. After this procedure, the
genes were ranked using the sensitivity measurement (8), increasing numbers of the top-
ranking genes were used for training (steps 2—6), and the gene set that produced the minimal
number of errors (9) was used to calibrate the ANNSs for testing the 25 blinded samples.
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FIGURE 1b. Training error results from step 5 of FIGURE la. A plot of the classification
error with increasing training epochs. The light gray lines represent the error of the
validation samples and the darker lines represent the classification error of the training
samples. The consistent decrease in error over increasing epochs implies that overfitting of
the data did not occur.
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FIGURE 1c. Gene minimization results from step 9 of FIGURE la. This is a plot of the
average number of misclassifications when increasing numbers of genes were used: the
number of misclassifications minimized at 96 and 192 genes. The top-ranking 96 genes were
used to calibrate the neural networks for subsequent training and testing of the 25 blinded
test samples.

gene has a minimal effect on the classification result, then it receives a low rank.
Then, in order to determine the best number of high-ranking genes, a gene mini-
mization strategy was employed in which the network was trained with increasing
numbers of the top genes (i.e., 6, 12, 24, 48, 96, 192, 384, 768, 1536, and 2308
genes) and the performance of the network determined using the a priori information
about the training samples. When the network was trained using the top 96 genes,
the average number of misclassifications was near zero (<0.5) (FiG. 1c). They clas-
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FIGURE 2. Classification and diagnosis of the SRBCT samples (with permission from
ref. 1). The x-axis is the Euclidean distance between an ideal ANN output vote and the
observed average vote. The vertical dashed line represents the empirical 95 percentile
boundary beyond which diagnosis is not confident. Testing samples are represented by
triangles, and training samples are shown as squares. Black triangles are the non-SRBCT
samples not associated with any of the diagnostic categories. Two testing samples are
correctly diagnosed, but lie outside the 95 percentile boundary (Test20-EWS and Test10-
RMS). Only one training sample (EWS-T13) lies outside the 95 percentile boundary. All

5 non-SRBCT samples lie outside the 95 percentile boundary as they should.
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FIGURE 3a. MDS using the top 96 discriminating genes (with permission from ref. 1).
Two views of the MDS results depicting the difference in gene expression of the four
SRBCT classes.

sified all the training samples correctly with >98% accuracy and correctly diagnosed
>90% of the blind test samples, which included 5 non-SRBCT samples (see FIG. 2).
Based on all training and testing samples, the sensitivity of the network was 93% for
EWS, 96% for RMS, and 100% for both NB and BL. The specificity was 100% for
all four SRBCT categories. Many of these 96 genes were not previously known to
be associated to the four cancers examined. MDS using these 96 genes is shown in
FIGURE 3a. Hierarchical clustering of the samples and the top 96 genes is shown in
FIGURES 3b and 3c. One gene, FGFR4, a tyrosine kinase receptor, is highly expressed
in RMS and could be useful as a therapeutic target. Thus, they demonstrated that a
diagnostically sound classifier of cancer could be achieved using microarray tech-
nology and ANNs and that meaningful biology could be extracted through ANN
gene ranking. Since this study was published, it is worth noting that the microarray
technology used, from the RNA preparation to the cDNA printing to the image
scanning, has been significantly improved upon. cDNA chips, for example, have
gone from parallel monitoring of ~6k clones to ~40k—100k clones. In addition, the
improvement of microarray scanner technology has brought much greater consistency
to the scanning process. This study marks the first successful attempt at using ANNs
to classify cancers according to their gene expression profiles.

Estrogen Receptor Status in Breast Cancer

In another study, a very similar ANN approach (see F1G. 4a) was used to classify
breast cancers based on their estrogen receptor status.? In this study, Gruvberger et al.
analyzed the gene expression profiles of 58 node-negative breast carcinomas using
a 6.7k cDNA microarray: 47 samples were used to train the network and 11 samples
were used as test samples to verify the universality of the classifier. They were able
to predict all 47 training and 11 testing samples with 100% accuracy using the top
100 genes (F1G. 4b and TABLE 2). When they repeated the classification procedure
excluding the ER gene, 1 of the 47 training samples was incorrectly classified, but
all of the 11 test samples remained correctly classified. This led them to look at how
far down the list of discriminating genes they could go and still obtain accurate
sample prediction. When they used the genes that ranked between 301 and 400, the
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FIGURE 3b. Hierarchical clustering using the top 96 discriminating genes (with
permission from ref. 1). Hierarchical clustering and heatmap of genes and samples with

dendrogram colored according to clinical diagnosis.
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FIGURE 3c. Hierarchical clustering using the top 96 discriminating genes (with
permission from ref. 1). Enlargement of the sample dendrogram in FIGURE 3b. All 63
training samples were correctly clustered within their diagnostic categories.
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FIGURE 4a. ER status
ANN work flow (with per-
mission from ref. 2): 6728
genes from 58 experiments
were filtered for quality, re-
ducing the number of genes
to 3389 (1). Dimensionality
was reduced by using the
top 10 components from
PCA (2). The 47 training
samples were randomly par-

titioned into 3 groups (3). Two groups were used for training, while the third was held aside
for validation (4). The multilayer perceptron ANN was trained with 5 nodes in the hidden
layer for 100 epochs (5). A different third (see step 4) was selected for validation, and train-
ing (5) was performed again. Steps 4-6 were performed one more time such that each third
was chosen for validation once. After this, steps 3—6 were repeated 199 more times, making
a total of 200 random partitions (7). The genes were ranked for their sensitivity to the clas-
sification scheme (8). Next, the number of top-ranking genes required to classify accurately
was determined through a gene minimization process using increasing numbers of the top-
ranking genes (9). Finally, these selected genes were taken through steps 2—7.
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FIGURE 4b. ER status ANN results (with permission from ref. 2): ANN average voting
results and standard deviations (solid lines) using the top 100 genes. An average vote (x-axis)
of 1 represents the ideal vote for ER+ (black) and an average vote of 0 represents the ideal
vote for ER— (gray). The decision threshold is 0.5. The 47 training samples are below the
dashed black horizontal line, and the 11 test samples are located above this line.
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FIGURE 4c. ER status ANN results (with permission from ref. 2): ANN average voting
results and standard deviations (solid lines) using the top 301—400 genes. An average vote
(x-axis) of 1 represents the ideal vote for ER+ (black) and an average vote of 0 represents
the ideal vote for ER— (gray). The decision threshold is 0.5. The 47 training samples are
below the dashed black horizontal line, and the 11 test samples are located above this line.
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TABLE 2. Prediction of ER status

Validation (n = 47) Test (n=11)

Genes Correct ROC area Correct ROC area
Top 100 47 100.00% 11 100.00%
51-150 43 97.80% 9 100.00%
101-200 45 99.30% 11 100.00%
151-250 44 97.50% 9 100.00%
201-300 41 93.70% 11 100.00%
251-350 39 95.30% 9 93.30%
301-400 41 93.10% 8 96.70%
Random 38.8+0.2 91.8+0.2% 55102 53.0+2.6%

NoTE: Adapted with permission from ref. 2.

classification still had ROC areas of 93.7% for the training set and 96.7% for the test
set (F1G. 4c and TABLE 2). They did report, however, that the ANN committee votes
when using this list of genes were closer to the decision boundary and thus should
be invested with less confidence. By this experiment, they demonstrated that some
of the information content was found in the 301—-400 range of discriminators. Using
the weighted-gene analysis (WGA) method,!? the authors discovered a set of 113
genes that were able to classify the samples with 96% accuracy using hierarchical
clustering (F1G. 5b). The MDS of the samples using the 113 genes is also shown in
FIGURE 5a. Using ANNSs, this study showed that ER+ and ER— tumors have very
different gene expression profiles with the ability to accurately predict even when
the ER gene and the top-ranking genes are removed from the analysis.

Other Applications of Machine Learning to Cancer Classification

West et al.® used Bayesian regression modeling to develop a classifier to predict
both the estrogen receptor status and the categorized lymph node status of primary
breast tumors. Bayesian modeling does not assign a sample to a particular class, but
rather assigns a probability that each sample belongs to each output class. Lymph
node status is the single most important prognostic indicator for breast cancer,!3 and
estrogen receptor status has received attention as a factor in breast cancer develop-
ment and progression.*1415 This study was published only one month after
Gruvberger’s ER paper? and represents further proof that both ER and clinical status
can be predicted using gene expression profiling.

Van’t Veer et al.® used a leave-one-out supervised correlation-based method to
predict clinical outcome of breast cancer. They defined “poor prognosis” (n = 34) as
patients who were lymph node—negative, but developed distant metastases within
5 years (mean time to metastasis was 2.5 years), and “good prognosis” (n = 44) as
patients that were lymph node—negative and did not develop distant metastases within
5 years (mean follow-up time of 8.7 years). The authors first selected ~5000 genes
from the 25,000 genes measured using an unsupervised selection method (i.e., two-
fold regulation and P value of less than .01 in more than 5 tumors). In one of their
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TABLE 3. Breast cancer patients eligible for adjuvant systemic therapy

Patient group

Total patient group Metastatic disease at ~ Disease-free at

Consensus (n=178) 5 years (n = 34) 5 years (n = 44)
St. Gallen 64/78 (82%) 33/34 (97%) 31/44 (70%)
NIH 72/78 (92%) 32/34 (94%) 40/44 (91%)
Prognosis profile? 43/78 (55%) 31/34 (91%) 12/44 (27%)
[18/44 (41%)"]

NoTe: The conventional consensus criteria are as follows: tumor 22 cm, ER—, grade 2-3,
patient < 35 years (either one of these criteria; St. Gallen consensus); tumor >1 cm (NIH consensus).
Table adapted with permission from ref. 5.

“Number of tumors having a poor prognosis signature using microarray profile, defined by the
optimized sensitivity threshold in the 70-gene classifier.

umber of tumors with a poor prognosis signature in the group of disease-free patients when
the cross-validated classifier is applied.

FIGURE 5a. ER+ (black) and ER— (gray) clustering using the 113 genes selected by
weighted-gene analysis (WGA) (with permission from ref. 2): MDS plot of the 47 training
samples. The distance between each of the samples represents their approximate degree of
correlation.

FIGURE 5b. ER+ (black) and ER— (gray) clustering using the 113 genes selected by
weighted-gene analysis (WGA) (with permission from ref. 2): Hierarchical clustering of the
samples (in columns) and genes (in rows). The cluster of genes denoted “ER Cluster” are
those genes that clustered with the ER gene (ESRI).
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analyses, they performed 78 leave-one-out classifications, each time using the 77
training samples to select the discriminatory gene list and predict the left out 78th
sample. With this validation scheme, they successfully predicted the left out samples
between 56 and 68 times out of 78 depending on the correlation threshold used. In
addition, they correctly predicted 17 out of 19 tumors from an independent test set
using a 70-gene classifier. Van’t Veer et al. compared their classifier to the St. Gallen
and NIH consensus conference guidelines for eligibility for adjuvant chemotherapy.
These guidelines are based on histological and clinical observations. The compari-
son is detailed in TABLE 3. For patients who developed metastatic disease and should
receive adjuvant systemic therapy, van’t Veer’s classifier was slightly less sensitive
than both the St. Gallen and NIH consensuses. Of the patients who remained disease-
free, however, van’t Veer’s classifier was significantly more specific than either of
the two consensuses. The findings of this and similar subsequent studies may
significantly change the way a breast cancer patient is determined to be eligible for
adjuvant chemotherapy. Disease-free patients may be more accurately diagnosed
and suffer much less in the way of harmful side effects.

Furey et al.* used SVMs and the expression of 97,802 clones to discriminate
between 16 ovarian cancers and 15 normal tissues (mixed ovarian tissue and other
normal tissue). With various optimization attempts of the SVM parameters and the
number of genes used as input, they achieved between 71% and 84% accuracy using
leave-one-out cross-validation. Interestingly, their analysis misclassified a normal
ovarian tissue sample as ovarian cancer and, upon further investigation, the sample
was discovered to be mislabeled. This study demonstrates the power of SVMs to (1)
predict whether a tissue sample is cancerous and (2) validate sample information
based on gene expression data.

Other studies include that of Xu ef al.,> who used ANNSs to distinguish between
Barrett’s esophagus (BA) (n = 14) and esophageal cancer (CA) (3 squamous cell
carcinomas and 5 adenocarcinomas). They selected the 160 most relevant genes using
SAM (Statistical Analysis of Microarray).!® After training the network with 12
samples (8 BAs and 4 CAs), it correctly predicted 10 test samples (6 BAs and 4 CAs).

Shipp et al.” used a supervised learning approach to predict the outcome of
diffuse large B cell lymphoma (DLBCL) using oligonucleotide arrays with 6817
probes and tumor samples from 58 DLBCL patients. The 58 patients were separated
into two groups: cured disease (n = 32) and fatal or refractory disease (n = 26). The
5-year overall survival (OS) rate of the 58 patients was 54%. Their supervised learning
algorithm employed a leave-one-out cross-validation procedure that generated 58
sets of 13 discriminatory genes. Seven of the 13 genes were common to all of the 58
sets of 13. Using these 58 sets of 13 genes and testing on the single sample that was
left out, they generated a prognosis prediction for each patient. Recalculating the 5-
year OS for the two prediction classes produced the following: predicted to be cured,
5-year OS = 70%; predicted to have fatal/refractory disease, 5-year OS = 12%
(nominal log rank P =.000004). Thus, using a supervised learning approach, Shipp
et al. demonstrated that there is likely to be a gene expression profile at time of
diagnosis that can help clinicians predict the outcome of DLBCL patients and
proceed accordingly.

Another application of ANNs to DLBCL was performed by O’Neill and Song,®
who achieved improved classification accuracy using ANNs on the data of Alizadeh
et al.'7 Alizadeh et al. performed cluster analysis and achieved 93% diagnostic
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accuracy and were not able to successfully predict prognosis with their methods.
O’Neill and Song, using the same data set, were able to achieve 99% diagnostic
accuracy and 100% prognostic accuracy. Thus, they demonstrate the significant
superiority of ANNs over cluster analysis.

OUTLOOK

It is clear that Al is bringing to reality some of the promises made by proponents
of microarray. Al can accurately predict tumor subtype, metastatic state, and
estrogen receptor status. Studies are starting to emerge that demonstrate the power
of ANNS to predict clinical outcome. One of the keys to unlocking the power of Al
to predict clinical outcome is identifying the misregulated genes in each cancer type.
Using this information, we can develop custom arrays containing on the order of 10
to 100 unique genes (and replicates of these genes) that have been implicated in a
particular cancer’s prognosis profile. We predict that, once a set of diagnostic/prog-
nostic specific genes are identified for all human diseases, handheld computers with
an embedded or hard-coded, trained neural network could scan this gene chip,
combine the acquired transcriptional data with known clinical parameters such as
age, sex, date of presentation, etc., and output a diagnosis or prognosis prediction
and a suggested course of treatment. Personalized medicine such as this may sound
futuristic, but the fundamental building blocks are already a reality.
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