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Proteomics is more than just generating lists of proteins that

increase or decrease in expression as a cause or consequence of

pathology. The goal should be to characterize the information

flow through the intercellular protein circuitry that communicates

with the extracellular microenvironment and then ultimately to

the serum/plasma macroenvironment. The nature of this

information can be a cause, or a consequence, of disease and

toxicity-based processes. Serum proteomic pattern diagnostics

is a new type of proteomic platform in which patterns of

proteomic signatures from high dimensional mass spectrometry

data are used as a diagnostic classifier. This approach has

recently shown tremendous promise in the detection of early-

stage cancers. The biomarkers found by SELDI-TOF-based

pattern recognition analysis are mostly low molecular weight

fragments produced at the specific tumor microenvironment.
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Abbreviations
AI artificial intelligence

MS mass spectroscopy

SELDI surface-enhanced laser desorption/ionization

TOF time-of-flight

Introduction
Despite the urgent need to discover serum biomarkers for

the early detection of disease, the number of new bio-

markers reaching routine clinical use remains dismally

low [1�,2]. The low molecular weight range (<15 000 Da)

of the serum proteome, although until very recently

largely uncharacterized, promises to contain a rich source

of previously undiscovered biomarkers [3�], as biological

processes give rise to cascades of enzymatically generated

and proteolytically clipped biomarker fragments. The

blood proteome is changing constantly as a consequence

of the perfusion of organ systems the underlying patho-

physiology of which adds to, subtracts from or modifies

the circulating proteome. Thus, even if these small enzy-

matically generated peptide fragments are far removed

from the actual disease, they are not merely ‘epipheno-

mena’ and can retain specificity for the disease because

the process that generated the clipping in the first place

can arise within the uniqueness of the disease tissue

microenvironment. These low molecular weight mole-

cules exist below the range of detection achieved by

conventional two-dimensional gel electrophoresis, as they

cannot be efficiently separated by gel-based techniques

[3�]. As a result, investigators have turned to mass spectro-

scopy (MS), which exhibits its optimal performance in the

low mass range [4,5].

Assuming that the low molecular weight and low abun-

dance biomarkers contain important diagnostic informa-

tion, the search for these markers usually begins with a

separation step to remove the abundant high molecular

weight ‘contaminating’ proteins, such as albumin, thyro-

globulin and immunoglobulins. The analysis can then

focus on the low abundance region of the proteome. From

a physiological perspective, however, this removal might

be the wrong approach to take for biomarker discovery,

akin to throwing the baby out with the bathwater. Free-

phase, unbound low molecular weight molecules will be

rapidly cleared through the kidney filtration system, sig-

nificantly reducing the concentration of these biomarkers

to a level below the detection limits of any routine clinical

testing device and certainly below the detection limits of

most mass spectrometers. In the face of the vast excess of

high molecular weight serum proteins, however, it is

likely that low abundance and low molecular weight

biomarkers will become bound to large high-abundance

carrier proteins and be protected from kidney clearance

just on the basis of the tremendous stoichiometric differ-

ences that arise between the relative abundances of

albumin and a low abundance clipped diagnostic frag-

ment [6,7]. Thus, the bound low abundance and low

molecular weight carrier proteins possess a half-life that

is many orders of magnitude larger than that of free-phase

small molecules. Circulating carrier proteins have been

recently found to act as a reservoir for the accumulation

and enrichment of bound low molecular weight biomar-

kers, integrating and storing diagnostic information like a

capacitor stores electricity [8��,9��].

To be effective, a clinically useful disease and cancer-

related biomarker should be measurable in an accessible

body fluid such as serum, urine or saliva. As these fluids

are a protein-rich information source that possibly
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contains traces of whatever the blood has encountered on

its constant perfusion and percolation throughout the

body, proteomics might offer the best chance of discover-

ing early-stage changes. In the past, the search for bio-

markers for early disease and toxicity detection has been a

low-throughput approach, looking for overexpressed pro-

teins in blood that are aberrantly shed into the circulation

as a consequence of the disease process. There are

potentially tens of thousands of intact and cleaved pro-

teins in the human serum proteome, so finding the elusive

single disease-related protein is like searching for a

needle in a haystack, requiring the laborious separation

and identification of each and every protein biomarker.

Moreover, it is unlikely that these elusive single biomar-

kers will ever be used for the early detection of disease, as

clinical applications will be eventually applied to a human

population exhibiting vast heterogeneity, not only in their

respective proteomes but also in the underlying disease

process.

Initial attempts to employ MS for the identification of

biomarkers for cancer have been very promising

[10��,11,12�–15�,16,17,18�]. Unlike past attempts that

start with a known single marker candidate, proteomic

pattern analysis begins with high dimensional data (e.g.

containing greater than 10 000 data points per sample and

upwards of 1–2 million data points per patient), usually

produced by high-throughput MS. This method

attempts, without bias, to identify patterns of low mole-

cular weight biomarkers as ion peak features within the

spectra as the diagnostic itself.

Serum proteomic pattern diagnostics:
producing the mass spectra
Although investigators have used a variety of different

bioinformatic algorithms for pattern discovery, the most

common analytical platform comprises a ProteinChip1

Biomarker System-II (PBS-II, a low-resolution time-of-

flight [TOF] mass spectrometer). Herein, samples are

ionized by surface-enhanced laser desorption/ionization

(SELDI), a protein chip array-based chromatographic

retention technology that allows for direct mass spectro-

metric analysis of analytes retained on the array (Figure 1).

Only a subset of the proteins in the serum bind to the

chromatographic surface of the chip and the unbound

proteins are washed away. The adherent proteins are

treated with acid (so that they can become ionized)

and then dried down onto the surface. The capture region

Figure 1
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Surface-enhanced laser desorbtion and ionization (SELDI) technology. This type of proteomic analytical tool is a class of MS instrument that is

useful for the high-throughput proteomic fingerprinting of serum. Using a robotic sample dispenser, 1 mL of raw serum is applied to the surface

of a protein-binding chip. Some laboratories pre-fractionate their samples beforehand, whereas others perform complex analysis for optimizing
binding by diluting into a myriad of pH and salt permutations. Regardless of the upfront manipulations, but based on the underlying SELDI chip

chemistry and the pH and buffer used, only a subset of the proteins in the sample bind to the surface of the chip. The bound proteins are then treated

with a MALDI matrix, washed and dried. The chip, containing multiple patient samples, is inserted into a vacuum chamber where it is irradiated with a

laser. The laser desorbs the adherent proteins, causing them to be launched as ions. The time-of-flight (TOF) of the ion before detection by an

electrode is a measure of the mass to charge (m/z) value of the ion. The ion spectra can be analyzed by computer-assisted tools that classify a subset

of the spectra by their characteristic patterns of relative intensity.
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containing individual captured serum protein samples,

dried down on a row of spots, is inserted into a vacuum

chamber and a laser beam is fired at each spot. The laser

energy blasts off (desorbs) the ionized proteins, and the

ionized proteins fly down the vacuum tube toward an

oppositely charged electrode. The mass to charge (m/z)

value of each ion is estimated from the time it takes for

the launched ion to reach the electrode; small ions travel

faster. Therefore, the spectrum provides a time-of-flight

signature of ions ordered by size. Recently this concept

has been extended to high-resolution MS, as it was found

for ovarian cancer detection that higher resolution MS

data generates diagnostic models with higher sensitivity

and specificity. This results from both the increased

number of peaks seen and the much better reproduc-

ibility between and within machine runs [15�]. Moreover,

the spectral resolution of the lower resolution instrumen-

tation cannot separate specific ions that are close in mass/

charge, which can cause multiple specific discreet ions to

coalesce into a single peak. Whether or not low-resolution

SELDI will be displaced entirely by high-resolution

SELDI as a clinical diagnostic platform remains to be

seen, as more comparison studies are required.

The high-resolution mass spectrometer used in our stud-

ies is a hybrid quadrupole time-of-flight mass spectro-

meter (QSTAR pulsar i, Applied Biosystems Inc.; http://

www.appliedbiosystems.com/) fitted with a Protein-

Chip1 array interface (Ciphergen Biosystems Inc.; http://

www.ciphergen.co.uk/) and externally calibrated twice a

day using a mixture of known peptides. As a point for

analytical comparison, the QSTAR-TOF-MS (routine

resolution �8000) can completely resolve species differ-

ing by an m/z of only 0.375 (e.g. at m/z 3000), whereas

complete resolution of species with the PBS-II-TOF-MS

(routine resolution �150) is only possible for species that

differ by an m/z of 20 (Figure 2).

In a clinical setting where a pattern test might eventually

be employed as a diagnostic, it will be important to

determine overall spectral quality and to develop spectral

release specifications such that variances introduced into

the process can be evaluated and monitored. Day-to-day,

lot-to-lot and machine-to-machine variances brought in

from sample handling and/or storage and shipping con-

ditions will need to be evaluated and understood as well

as the mass spectrometer itself. To that end, we employ

a pooled reference standard sample (SRM–1951A), ob-

tained from the National Institute of Standards and

Technology (NIST; http://www.nist.gov), which is ran-

domly applied to one spot on each protein array as a

quality control for overall process integrity, sample pre-

paration and mass spectrometer function. Additionally,

for spectral quality control, quality assurance and spectral

Figure 2
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SELDI mass using PBSIIc low-resolution instrument

SELDI using QSTAR high-resolution instrument

Comparison of low-resolution and high-resolution SELDI-TOF mass spectra. Spectra from the same weak cation exchange chip (queried at the same

spot on the same chip) were generated on either (a) a PBS-IIc (Ciphergen Biosystems, Inc.) low-resolution instrument or (b) a QSTAR pulsar i

(Applied Biosystems Inc.,) high-resolution instrument.
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release specification, all spectra are subjected to plotting

by total ion current (total record count), average/mean and

standard deviation of amplitude, chi-square and t test

analysis of each ion or m/z range in which the individual

ion values are grouped based on the inherent resolution of

the mass spectrometer and the amplitude values of the

individual ions summed together into one grouping, and

quartile plotting measures using JMP (SAS Institute,

Cary, NC) software. Stored procedures developed in-

house are also used to verify spectra before any pattern

discovery takes place. Process measures are checked by

analyzing the statistical plots of the NIST serum refer-

ence standard, and spectra that fail statistical checks for

homogeneity are eliminated from in-depth modeling and

analysis. This type of upfront analysis is critical so that it is

possible to compare the total analytical variance obtained

for the constant NIST reference sample with the variance

of the clinical sample populations. The total variance of

the reference sample should be no less than that for the

clinical specimens.

ProteinChip1 arrays (Ciphergen Biosystems Inc.) are typ-

icallyprocessedinparallelusingaBiomekLaboratorywork-

station (Beckman-Coulter; http://www.beckmancoulter.

com/) modified to make use of a ProteinChip1 array

bioprocessor (Ciphergen Biosystems Inc.). The biopro-

cessor holds twelve ProteinChips1, each having eight

chromatographic ‘spots’, allowing 96 samples to be pro-

cessed in parallel and the matrix to be applied using a

liquid robotic handling station (Genesis Freedom 200,

TECAN; http://www.tecan.com/).

Serum proteomic pattern diagnostics:
uncovering the pattern classifiers
A typical low-resolution SELDI-TOF proteomic profile

will have up to 15 500 data points that record data

between 500 and 20 000 m/z, with a high-resolution mass

spectrometer generating over 400 000 data points. Arti-

ficial intelligence (AI)-based systems that learn, adapt and

gain experience over time are uniquely suited for pro-

teomic data analysis, because of the huge dimensionality

of the proteome itself.

We begin our proteomic pattern analysis by first exporting

the raw data file generated from the high resolution

QSTAR mass spectra into tab-delimited files that gen-

erate approximately 350 000 data points per spectrum.

The individual m/z values are then grouped together into

buckets or ‘bins’ of data using a function of 400 ppm

based on the inherent resolution and mass accuracy of the

instrument, such that all data files possess the same

number of identically spaced and fixed m/z values (e.g.

the m/z bin sizes linearly increase from 0.28 at m/z 700 to

4.75 at m/z 12 000). This binning process actually con-

denses the number of data points from 350 000 to exactly

7084 points per sample and the m/z range of the bins

gradually increases as a function of the resolution capacity

of the machine. The 400 ppm binning function was based

on a value 10 times the estimate of the routine mass drift

of the QSTAR-TOF machine obtained by external and

internal calibration results (5–40 ppm), as a conservative

drift bracket.

The data are then randomly separated into equal groups

for training and testing. A variety of pattern recognition

tools have been successfully used for mining mass spec-

tral data [10��,11,12�–15�,16,17,18�]. One tool that has

shown great promise, and which was used in our first

studies [10��] for ovarian cancer detection, is one that

combines elements from genetic algorithms and self-

organizing adaptive pattern recognition systems [19–22]

(Correlogic Systems, Inc., http://www.correlogic.com/).

Genetic algorithms organize and analyze complex data-

sets as if they were information comprised of individual

elements that can be manipulated through a computer-

driven analog of a natural selection process. Self-organiz-

ing systems cluster data patterns into similar groups.

Adaptive systems recognize novel events and track rare

instances. The genetic algorithm component of the ana-

lysis begins with the random generation of a population of

1500 subsets of combinations of ion features of the mass

spectra. This number was chosen based on adequate

coverage of the data, with a heuristic that no value can

be duplicated within each of the 1500 subsets. Each

subset in the population specifies the identities of the

exact m/z values in each data stream, but not their relative

amplitude. The number of ion features in the subset

ranges from 5 to 20.

Data normalization is an important element of pattern

recognition, as bias introduced by protein chip quality,

mass spectrometer instrumentation and operator variance

can effect overall spectral performance. Moreover, it is

likely that different data normalization procedures will

generate different selected ions, especially in a clustering

algorithm where multiple ion features are used as the

pattern. As MS is not inherently quantitative, scalar

intensity changes might be apparent, yet the overall

pattern may not change. One way to typically normalize

MS data is to divide the amplitudes at each m/z value

within any randomly generated pattern subset by the

largest value within that subset. In this way, differences

in spectral quality that can emanate from biases such as

protein chip variance and not from the inherent disease

process itself can be minimized. Also, this method allows

for low-amplitude features to contribute substantially to

the classification. The spectra are normalized according to

the formula:

NV ¼ ðV � MinÞ=ðMax � MinÞ
NV is the normalized value, V the intensity value for the

specific randomly chosen m/z bin in question, Min the

intensity of the smallest intensity value of any of the m/z
bins within the randomly selected pattern and Max the

SELDI-TOF in proteomic pattern diagnostics Petricoin and Liotta 27

www.sciencedirect.com Current Opinion in Biotechnology 2004, 15:24–30

http://www.beckmancoulter.
http://www.beckmancoulter.com/
http://www.tecan.com/
http://www.correlogic.com/


maximum intensity of the m/z bin within the randomly

selected pattern. This equation linearly normalizes the

peak intensities so as to fall within the range 0 to 1. Each

of the randomly selected 1500 subset patterns is then

subjected to a fitness test.

The fitness test in these analyses is the ability of the

combined ion amplitude values of any candidate subset

to specify a lead cluster map that generates homoge-

neous clusters containing only diseased subjects or

unaffected subjects used in the training sets. The lead

cluster map is a self-organizing, adaptive pattern-recog-

nition algorithm that uses Euclidean distance to group

vectors of data. The map begins as an empty N-dimen-

sional space, where N is the number of m/z features in

the data vector. The optimal discriminatory pattern is

identified by finding the best combination of m/z bins for

which normalized ion intensity values in N-dimensional

space create a unique identifier or cluster of identifiers.

Any given training sample is compared for its proximity

to previously defined clusters of diseased and unaffected

subjects in N-space. If an N-dimensional identifier vec-

tor from a subject in the training group falls within the

decision boundary of an existing cluster, then the sub-

ject is classified as belonging to that group. For these

studies, the decision boundary is defined as 10% of the

maximum distance allowed in the space. This corre-

sponds to a 90% pattern match; thus, the decision

boundary is referred to as the 90% boundary. If the data

vector does not fall within the 90% decision boundary of

any existing cluster in the model it is used to establish a

new cluster and is identified as a new observation. The

process is repeated once for each vector in the collection

of training data.

Those subpopulation patterns that best discriminate the

training set are more likely to survive the culling of the

population to the original population size (e.g. 1500) and

contribute to the next generation of fit candidate patterns.

The progeny of the most-fit patterns are generated

through crossover and mutation of the 5–20 specific m/z
bin values within each subset. Each subset is evaluated by

its ability to accurately distinguish the two training set

populations. As a result, each successive population of

subsets is, on average, more fit than its predecessor. To

ensure that the algorithms do not trend to less than near

optimal decision points, a ‘mutation’ rate is built into the

process such that 0.02% of the m/z bin values are ran-

domly re-chosen. Crossover operations are of single point

type and are randomly selected in each mating. For

example, if there are five m/z bin values there can be

four crossover points. The genetic algorithm is iterated for

at least 250 generations or until a lead cluster map that

homogeneously separates diseased from unaffected is

generated. The lead cluster map that best separates

diseased from unaffected is deployed for validation using

blinded test sets.

Test data, not used during the training process, are then

analyzed in the following steps. The data are normalized

as described above and the normalized relative ampli-

tudes of the test sample spectra at the N-defined m/z
values bins are used to fix a point in N-dimensional space.

The Euclidean distance vector is then calculated between

this point and the center of all clusters (both cancer and

unaffected) formed by the training set. If the unknown

test vector falls inside the 90% boundary surrounding any

centroid, then it is classified as being a member of that

cluster and given a probability score based on its proximity

to the theoretical center of the cluster and the number of

records within that cluster. Otherwise, it is scored as a

‘new cluster’. The results from the test set of data are used

for determination of sensitivity, specificity and positive

predictive value of the patterns.

As each new patient is validated through pathological

diagnosis using retrospective or prospective study sets, its

input can be added to the ongoing clustering using the

same models. The AI tool learns, adapts and gains experi-

ence through constant vigilant updating. In fact, it is

possible to generate not just one but multiple combina-

tions of proteomic patterns from a single mass spectral

training set, each pattern combination readjusting as the

models get better in the adaptive mode.

MS-based diagnostics: a view to the future
MS analysis of the low molecular weight range of the

serum/plasma proteome is a rapidly emerging frontier for

biomarker discovery and clinical diagnostics. Proteomic

pattern diagnostics represents a new paradigm for disease

detection and is very amenable to the high-throughput

world of clinical diagnostics. The analysis requires only

a drop of blood and the mass spectra patterns obtained

in less than 30 min. SELDI-TOF proteomic pattern

analysis, in theory, can be applied to any biological state.

Using this approach, the pattern itself, independent of

the identity of the proteins or peptides, is the discrimi-

nator, and may be clinically useful immediately before

the underlying identities are eventually discerned.

Depending on the identity of the signature ion, it may,

or may not, be desirable or even feasible to proceed

directly to develop a serum immunoassay for the indivi-

dual biomarker. This is because the ion amplitude of

MALDI-TOF does not directly reflect the concentration

of the given biomarker associated with the ion. Moreover,

if the biomarker is the cleaved version of a larger protein,

it may be difficult to generate antibodies that only recog-

nize the cleaved version and do not cross-react with the

parent species. A possibility exists to develop polyclonal

antibodies for specific capture and following binding the

entirety of the recognized entities, including the diag-

nostic fragment, can be eluted and analyzed via MS.

MS platforms of the future, coupled to pattern-recogni-

tion algorithms, might become superior to antibody-based

28 Analytical biotechnology
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immunoassays. MS can generate complex proteomic

spectra from an extremely small volume of blood in only

a few seconds, in effect sensing the presence of hundreds

to thousands of events simultaneously and almost instan-

taneously without the need to develop antibodies for each

analyte. Current MS platforms have a sensitivity in the

femtomolar range, and will become even more sensitive

in subsequent generations of the technology. Mathema-

tically it should be obvious that a pattern of multiple

biomarkers will contain a higher level of discriminatory

information than a single biomarker alone, particularly for

large heterogeneous patient populations. Currently, our

group is planning the first large-scale clinical trials for

FDA approval to explore and validate this concept for

monitoring ovarian cancer. As evidence of the growing

acceptance of this new paradigm, large commercial refer-

ence laboratories have begun initiatives to explore the use

of MS proteomic patterns for routine diagnosis (http://

www.questdiagnostics.com; http://labcorp.com).

As we now know that the vast majority of these biomar-

kers exist in association with circulating high molecular

mass carrier proteins, these findings shift the focus of

biomarker analysis to the carrier protein and its biomarker

content. The proteomic pattern that emanates from this

microenvironment might signal the presence of an early-

stage lesion. Under this hypothesis, the discriminatory

molecules are likely to be metabolic products, enzymatic

fragments, modified proteins, peptides or cytokines. In

fact, the most important biomarkers might be normal host

proteins that are aberrantly clipped or reduced in abun-

dance. A pattern analysis approach takes into considera-

tion the loss or gain of ions within the spectra. Past

conventional protocols for biomarker discovery discard

the abundant ‘contaminating’ high molecular mass pro-

teins, to focus on the low mass range. Unfortunately, this

procedure removes most of the important diagnostic

biomarkers. We can now develop new tools, created at

the intersection of proteomics and nanotechnology,
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Biomarker amplification and harvesting by carrier molecules. Low molecular weight peptide fragments, produced within the unique tissue

microenvironment and generated as a consequence of the disease process, permeate through the endothelial cell wall barrier and trickle into the
circulation. Here, these fragments are immediately bound with circulating high-abundance carrier proteins, such as albumin, and protected from

kidney clearance. The resultant amplification of the biomarker fragments enables these low-abundance entities to be seen by MS-based

detection and profiling. In the future, harvesting nanoparticles, engineered with high affinity for binding, can be instilled into the collected body fluids

or injected directly into the circulation to bind with the disease- and toxicity-related information archive. These nanoparticles and their bound

diagnostic cargo can then be directly collected, filtered over engineered filters and queried by high-resolution MS. A ‘look up table’, where the

exact identities of each of the peaks will be compared against the accurate mass tag of each of the peaks within the spectra, will enable the

simultaneous identification of each entity within the pattern as well as allowing the discovery of the diagnostic pattern itself.
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whereby nanoharvesting agents can be instilled into the

circulation (e.g. derivatized gold particles) or into the

blood collection device to act as ‘molecular mops’ that

soak up and amplify the biomarkers that exist [8��]
(Figure 3). These nanoparticles, with their bound diag-

nostic cargo, can be directly queried via MS and the low

molecular weight and enriched biomarker signatures

revealed.
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