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Abstract

In this report, we determine whether genes identified in a previously reported cDNA microarray investigation of childhood acute lym-
phoblastic leukaemia (ALL) diagnostic bone marrow have the same distinguishing power in an independently derived cDNA microarray
dataset from an equivalent but distinct patient cohort. Genes previously reported as discriminatory, generally were unable to distinguish
ALL lymphocyte lineages, the presence of the Tel-AMLI translocation and patient risk stratification. An artificial neural network identified
endoglin, which was reported in the initial study as a potential lineage marker, was actually better at identifying ALL patients with poor

outcome.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There have been numerous investigations into the classifi-
cation of childhood acute lymphoblastic leukaemia (ALL)
using microarray generated gene expression profiles. The
ultimate intention of a number of these investigations is to
identify sets of genes whose expression correlate for dis-
ease progression, clinical outcome or the identification of
novel subtypes of ALL. In general, the approach has been to
interrogate the microarray gene expression data for simplified
common ‘signatures’ which consist of a reduced numbers of
genes which best discriminate ALL patient subgroups. Crit-
ical to robust research is the ability to replicate experimental
findings. Within the field of microarray analysis, validation
of the expression of identified ‘significant genes’ is required
to be undertaken in independent laboratories on equivalent
but separately derived data sets.
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The study by Moos et al. [1] reported the analysis of 51
bone marrow samples from children with acute leukaemia
using cDNA spotted microarray. Gene expression data from
4608 genes in leukaemic blasts were assessed using para-
metric f-test comparison (two tailed, homoscedastic) and
Infoscore, a non-parametric rank-based scoring system for-
mulated on conditional entropy ([1] and references therein).
Using these two supervised methods the investigators iden-
tified a signature of 20 discriminating genes in an attempt
to demonstrate how microarray gene expression profiling
may augment current risk-based classification of paediatric
leukaemia [1].

In this paper, we report the examination of the genes iden-
tified by Moos et al. [1], in what we shall call “The Utah
Study’, as being the ‘best’ discriminators in cDNA microar-
ray gene expression data generated from 54 bone marrow
samples obtained from childhood ALL patients presenting at
the Children’s Hospital at Westmead. Comparisons made by
The Utah Study include childhood ALL patients having dif-
ferent immunophenotypic lineage (B versus T), ALL patients
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in different risk strata and ALL patients having the # (12;
21) translocation. Unlike the Utah Study, no acute myeloid
leukaemia samples were included in this investigation. We
describe how the differentially expressed genes identified
using both analytical approaches by The Utah Study [1]; do
not provide the level of distinction between these subgroups
in our patient cohort. The reason for this discrepancy will be
discussed. Analysis of our data with an alternative machine
learning approach indicated that the expression of endoglin,
which was identified in The Utah Study as being able to dis-
criminate ALL lineage, was better atidentifying ALL patients
who eventually succumbed to the disease. This investigation
highlights the difficulty in trying to identify simple biological
relationships in a complex heterogeneous disease like ALL
using a multidimentional gene expression data generated by
microarray technology.

2. Materials and methods
2.1. Patient specimens and clinical data

Bone marrow from 54 patients with ALL presenting at the
Children’s Hospital at Westmead was collected between the
years 1999-2003. This period corresponds to that reported by
The Utah Study. All specimens, as well as the associated com-
prehensive clinical and follow-up data for each patient, were
made available to the chief investigators for this project with
the approval of and according to the guidelines established by
the Children’s Hospital at Westmead’s, Tumour Bank Com-
mittee and institutional Human Research Ethics Committee.
All new ALL patients were routinely assessed and tested for
patient and disease-related prognostic indicators, specifically
recording age at diagnosis, white cell count, cytogenetics with
molecular assessment for translocations and DNA ploidy.
All patients were subsequently treated following the Berlin
Frankfurt Munster (BFM) 95 protocol.

Bone marrow aspirates in excess of diagnostic require-
ments were collected into EDTA tubes and subsequently
snap-frozen in liquid nitrogen and stored at —80 °C in the hos-
pitals Tumour Bank. A cohort of bone marrow samples were
also collected, from donors who did not have leukaemia and
whose marrow has been deemed normal by light microscopy
examination.

2.2. RNA isolation and microarray analysis

Total RNA was extracted from frozen bone marrow
samples using Trizol LS (GibcoBRL, Integrated Science)
following a modified procedure which allows the success-
ful and reproducible extraction of intact total RNA from
frozen archival bone marrow samples [2]. RNA quality was
assessed by determining the Ajgp/80 ratio by spectropho-
tometry, while 3 g RNA was loaded onto a 1% denaturing
agarose subject to electrophoresis followed by staining with
ethidium bromide. Gel images were taken and the intensity

of the 28S and 18S ribosomal RNA bands determined by
pixel density with the 28S:18S ratio [3]. RNA from 10 nor-
mal samples were pooled and subsequently used as control
material in microarray experiments so as to remove any bias
introduced by individual gene expression variation within our
control population.

The techniques used for the microarray cDNA prepara-
tion, indirect fluorescence labelling and hybridization are per
the techniques used at The Institute for Genome Research
(TIGR, USA) [4]. We combined equal amounts of Cy5-
labelled cDNA derived from ALL patient mRNA with the
Cy3-labelled cDNA from pooled normal mRNA controls and
mixed with 5 x SSC buffer which contained 25% formamide,
0.1% SDS, 10 wg human Cotl DNA, 20 pg heat-denatured
ssDNA, 6 g polyA, and 12 wg yeast tRNA. This cocktail
was denatured for 5min at 95 °C prior to being hybridized
to cDNA microarrays over night at 42 °C. cDNA microar-
rays were supplied by the Peter MacCallum Cancer Centre
and consisted of 10,500 sequence verified human genes
spotted onto Telechem® slides. Following hybridization, the
microarray was washed in a pre-warmed (50°C) 1 x SSC
solution containing 0.03%SDS for 5 min followed by suc-
cessive 5 min washes in 0.2 x SSC and 0.05 x SSC at room
temperature. The microarrays were scanned on an Axon
II Scanner with a multi-channel image generated which
was subsequently analysed with Genepix software (Axon,
USA).

2.3. Data analysis

Each ALL RNA sample was hybridized to at least three
separate cDNA microarray slides. Feature and background
intensity was generated for each of the Cy5 (R) or Cy3
(G) channel. Ratios of local background corrected fluores-
cence intensity from each channel were log, transformed
(logy R/G). The microarray logz R/G ratio data generated
from Genepix was normalised using the within-print-tip-
group intensity dependent location normalization (LOESS)
within Bioconductor (R-package http://www.r-project.org/)
was performed on all the microarrays. Missing values from
the resultant normalized microarray data was filled using K
nearest neighbour approach as per The Utah Study. Nor-
malised data was merged for each sample replicate with
mean logy R/G value used as the gene expression value for
subsequent analyses.

The genes previously selected by The Utah Study as hav-
ing discriminating gene expression signatures were identified
in our microarray data set by cross matching the Genbank
accession numbers following conversion to Unigene codes.
Hierarchical clustering with the centred Pearsons similarity
metric used by The Utah Study was performed using the
acuity software package (Axon, USA). In addition, principal
component analysis (PCA) was used to assess the discrimina-
tory ability of the genes for each subgroup comparison using
a multi-dimensional scaling approach. Finally, we subjected
the genes to a two-tailed homoscedastic 7-test to determine


http://www.r-project.org/

D. Catchpoole et al. / Leukemia Research 31 (2007) 1741-1747 1743

the chance (p-value) of these each gene discriminating the
subgroups in our ALL sample cohort.

Infoscore does not consider the actual gene expression val-
ues, but the ranking and position of values are being compared
and hence, can indicate whether the data sets differ or not and
how greatly they differ. The data generated using Infoscore
did not demonstrate any unique attributes when compared to
the #-test. Consequently, no data from the Infoscore analysis
will be shown but will be referred to in the text only.

2.4. Artificial neural network (ANN) analysis

For this analysis we included data generated from addi-
tional samples with 64 patients being examined. The patient
cohort were divided on the basis of clinical status with 56
being alive at the time of analysis and 8 who had died. In a
separate comparison 63 patients were divided on the basis on
cell lineage with 47 being B-lineage and 16 T-lineage. The
gene expression ratios were normalized using LOESS nor-
malization method. In order to include only high quality data
in the ANN analysis, the clones which had less than 90% of
features generating signal above local background across all
samples were excluded. There were 4989 clones that passed
this initial filter. In case of average quality greater than 0.9,
the expression ratio of low quality spot in an individual sam-
ple was replaced with the average ratio of this spot across
all samples. We then used PCA to reduce the dimensional-

ity of the data to the top 10 principal components as inputs
for ANN. We used feed-forward resilient back-propagation
multi-layer perceptron ANN with 3 layers [5]. The contribu-
tion of each gene to the classification was determined by the
ANN models by measuring the sensitivity of the classifica-
tion to a change in the expression level of each gene. In this
way, the genes were ranked according to their significance to
the classification.

3. Results
3.1. Annotation and gene selection

Both our gene dataset and that of The Utah Study were
identified using Genebank accession numbers. To cross-
match the equivalent genes on our microarray with The Utah
Study signatures, all relevant Genbank accession codes were
converted to Unigene cluster code. Our gene set was inter-
rogated on the basis of both Unigene accession numbers
and gene name. In the identified genes used to discrimi-
nate the various ALL sub groups, we found between four
and seven genes were not present on our array. For the gene
sets used to distinguish risk groups or Tel/AML cytoge-
netic status, the genes not found on our microarray consisted
of expressed sequence tags and unspecified clones. With
regards to the lineage comparison, gene not identified in

Accession Numbers T-Test ANN Rank
Utah Study  CHW Study  Pvaive TvsB Oufcome
Hypothetical protein LOC126208 AAD29811  AA434139 0430 2138 2873
“asoactive Intestinal Peptide Receptor 1 AADSBA12 HT73241 0.140 2947 44350
Graowth Differentiation Factar (MIC-1) AASEI109  AA450062 06567
MHC Class |l DP beta 1 W35115 AAABES32 51241010 7 5
| MHC Class || DP keta4 AAD3IE5T  AABBA195 370 8 38
Lysosomal-associated Membrane Protein5 ~ NMO06762 AA406585  1.10x10% 89 1841
Protein Tyrosine Kinase 2 AADD4361  AAB30298 00052
MHC Class | Polypeptide-Related Seq A AA149083  N71782 02734
Protein Tyrosine Phosphatase Receptor C H10346 H74265 350 86 13
Selectin L HOO0662 HOD662 20x10* 64 47
Lactatransferrin H21797 AABTTI06 00176 132 27
CD3D Antigen (TiT3 complex) AADS5946  AADS5946  B8.9x10"° 3 14
[Endodiin (Osler-Fendu YWeber Syndrome) W24 164 AAd4a108 0302 283 7]

= 0.02 <54.54

Ras Homolog gene family member H (TTF)  W56037 N80273 0.005

(8)

Fig. 1. Comparison of childhood ALL samples based on genes from The Utah Study scored by #-test reported to distinguish T & B-lineage with (A) Hierarchical
cluster plot. T lineage indicated by orange dendrogram lines. Genebank annotation, p-value following #-test and the ANN ranking data for lineage and outcome
comparisons are shown. (B) PCA plot. T-lineage samples are indicated with orange spheres.
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our data set, and hence excluded from our validation process
include CD74 (also called MHC class Il HLA DR gamma)
(AA047040), MHC class Il HLA-DR-alpha (W24610), MHC
class Il HLA-DR-alpha (W17387), MHC class Il HLA-DQ-
alpha (W67573), and CDI1e antigen (W05301). A number of
genes in the discriminating gene list where identified as ‘no
significant match’ and consequently could not be validated.

3.2. Lineage subgroup: T-lineage versus B-lineage

The genes identified as best distinguishing the B-lineage
and T-lineage ALL subgroups were compared in our cohort.
Due to the annotation shortfalls, 14 genes identified using
t-test and 15 genes with Infoscore in The Utah Study were
used to distinguish our T-ALL (14) from B-ALL (40) sam-
ples. Dendrograms generated by the hierarchical cluster
analyses indicated a clear distinction between the T and
B-lineage (Fig. 1A). The Utah Study indicated that the 20
best discriminating genes were identified with p ranging
from 2 x 1072 to 6 x 10~* which was considered to be of
‘high significance’, although it is unclear whether a correc-
tion for multiple hypothesis testing was considered. In our
cohort, only three genes reached significance when using the
t-test and considering a Bonferroni adjustment for signifi-
cance (¢ =5 x 107%); CD3D antigen (AA055948), and the
two MHC class Il DP genes (AA033653, W35115). Lacto-
transferrin (H21797), protein tyrosine phosphatase receptor
type C (H10346), endoglin (W24164) and protein tyrosine
kinase 2 (AA554361) indicate differential expression, but do
not differentiate according to leukaemia lineage. The remain-
ing genes did not correspond with the published paper, as no
distinguishing expression pattern was observable (Fig. 1A).
Principal component analysis (PCA) similarly supported the
ability of The Utah Study lineage classifier to draw a dis-
tinction between T and B-ALL (Fig. 1B) with 57.0% of the
variance being represented by the first three components.
Gene sets identified by both the 7-test and Infoscore lead to
successful segregation of samples on the basis of lineage in
our samples cohort.

To further interrogate our findings, our cDNA microarray
data was independently evaluated using an ANN approach.
Following quality filtering, 4989 genes were assessed to iden-
tify genes best at distinguishing ALL on the basis of lineage.
Genes were ranked and those used by The Utah Study were
identified (Fig. 1A). Of specific interest was the rank of
283 for the gene for endoglin, a proliferation-associated cell
membrane antigen not previously identified as being able to
distinguish lymphocyte lineage. This gene was identified by
The Utah Study as a potential lineage marker. However, fol-
lowing repeat analysis using the ANN, but comparing ALL
patients on the basis of clinical outcome, endoglin was ranked
number 7 in its ability to distinguish ALL patients who were
alive at the time of analysis compared to patients who had
died (Fig. 1A). Examination of the cDNA microarray gene
expression ratio for endoglin further indicated this distinction
in the 36 patients who had reached a 5-year event free survival

60.004 (A) P =0.3255
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40.00

30.00 4

Log2(R/G)

20.00 4

X

10.00 4

0.00 B i -

T-ALL (14)
Endoglin

T
B-ALL (49)

60.00 (B) P =0.001299

50.004
40.00
30.004

20.00 - T

10.00

Log2(R/G)

——

0.00+

-1 I.’H(- *
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Fig. 2. Comparison of the normalised log,(R/G) cDNA microarray values
for endoglin in childhood ALL samples. Box plots demonstrate the distribu-
tion of values when comparing (A) cell lineage or (B) patient outcome. The
bar indicates the mean value for the sample cohort, whilst the box 75% of
distribution, the whiskers 25% whilst the asterisk are outliers. Of the patients
who reached 5 year EFS, 29 were B-lineage with a mean log, R/G expression
value of 1.24 and 7 were T-lineage at a mean of 3.138. For the patients who
had relapsed 6 were B-lineage at a mean of 8.153 and 6 were T-lineage at
12.784.

endpoint compared to the 12 who had suffered a relapsed or
died (Fig. 2A and B) whilst -test confirmed a significant
variations in the distribution of values between ALL patients
on the basis of outcome (p =0.00129). Fig. 1A indicates that
the ranks of The Utah Study lineage classifier genes. Like
endoglin, selectin L, lactotransferrin (H21797) and protein
tyrosine phosphatase receptor type C (H10346) demonstrate
a similar elevation in rank when discriminating between ALL
samples on the basis of outcome. However, only selectin
L reached significance (p=0.03). By contrast, lysosomal-
associated multispanning membrane protein-5 (NM006762)
did not rank highly on the basis of outcome comparisons.
Vasoactive intestinal peptide receptor 1 (AA058412), and
LOC 126208 (AA029811) were lowly ranked with both ANN
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comparisons and did not appear discriminatory following this
analysis.

3.3. Cytogenetic subgroup: Tel-AML positive & negative

Only five (5) Tel-AML positive B-ALL patients were
present in our cohort. When compared to the Tel-AML neg-
ative (43) data slight differences were noted. Clustering of
our sample cohort using the published genes from both the #-
test (14 annotated) and Infoscore (12 annotated) approaches
showed no ability to distinguish B-ALL samples having
the Tel-AML translocation (Fig. 3A). Expression of glyoxy-
late reductase (W39164/R83908), a gene focussed on in the
published results, did not show differential expression as
expected and in fact demonstrated increased expression in
four of the five Tel-AML positive samples, which is the con-
verse of the findings of The Utah Study. PCA demonstrates
close relationship of the Tel-AML positive samples in both
gene classifiers with 44.5% of the total variance being repre-
sented with the first three principal components in the #-test
classifier. However, no distinction from the Tel-AML nega-
tive samples was observed (Fig. 3B). No gene was found to

(A)

1745

distinguish Tel-AML positive and Tel-AML negative patients
to a significant p value when tested across our samples.

3.4. Clinical subgroup: standard risk (SR) versus
medium risk (MR)

Our ALL cohort were divided into classes based on risk
stratification protocol used in BFM95 protocol with which
these patients were treated. This is equivalent to the NCI
criteria followed by The Utah Study. However, as the exact
criteria was not stated, direct comparison of risk stratification
subgroups was not possible. However, we used the published
t-test and Infoscore derived classifiers to distinguish the two
major subgroups in our cohort, SR and MR B-ALL. Neither
classifier was able to distinguish these clinical subgroups.
This is illustrated by both hierarchical clustering (Fig. 3C)
and PCA (Fig. 3D) where 61.7% of the total variance is rep-
resented within the first three principal components. Protein
kinase C substrate (NM002743), the gene identified in The
Utah Study, had a p values of 0.208 which was the second
most significant of the risk group classifier. No gene was
found to distinguish patients on the basis of BFM95 risk
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groups to a significant p value when tested across our patient
cohort.

4. Discussion

Investigations such as The Utah Study aim to reduce
highly dimensional data derived from complex diseases to
identify small numbers of genes which distinguish patients
as belonging to particular disease subgroups. If such ‘sig-
natures’ of differentially expressed genes are to be used
for diagnostic and clinical applications, such gene expres-
sion patterns need to be equally informative across sample
cohorts from different sites. That is, the utility of this tech-
nology for molecular diagnosis should demonstrate a degree
of resilience to variations which may be introduced during
sample collection as well as platform and technical condi-
tions under which the experiments are performed. With this
in mind, we have undertaken a validation study of genes
previously published as being able of discriminate different
childhood ALL subtypes [1]. By making such a comparative
investigation using the same cDNA glass slide microarray
platform whilst using an equivalent but independently derived
sample cohort from The Children’s Hospital at Westmead,
Australia, we hoped to determine whether this approach to
analysing microarray data will have utility in the broader
diagnostic setting.

Of the 14 genes identified by The Utah Study, which were
available for validation and that best discriminate B-lineage
and T-lineage ALL immunophenotypes, a suitable distinc-
tion was also made within our patient cohort. A number
of individual genes identified by both #-test and Infoscore
approaches could, in isolation, be used to identify a B-lineage
ALL from a T-lineage. CD3 is a classic marker for T cell
malignancies and is often identified as a highly significant dif-
ferentially expressed gene when comparing lineages in acute
lymphoblastic leukaemia. All but one identified T-lineage
ALL in our cohort had highly increased CD3 expression
when compared to normal bone marrow. Similarly, the MHC
histocompatibility complex gene family, whose expression
was confirmed using rtPCR by the Utah Study, were overly
expressed in B-lineage ALL as expected. It is most likely
that the combination of these few genes is what identified the
distinction evident in our cohort (Fig. 1B). None of the other
genes selected by both #-test and Infoscore, as being differ-
entially expressed in The Utah Study cohort were shown to
be differentially expressed between the lineage subtypes in
our dataset.

Indeed, no genes which were identified as being able to
classify ALL on the basis of cytogenetic abnormality or risk
stratification criteria by The Utah Study were able to dis-
tinguish the same groups in our patient cohort (Fig. 3). The
low combined variance levels in the first three components of
each of the PCA plots further indicates the lack of distinction
between the subgroups based on the genes identified. With
these comparisons, The Utah Study indicated that all of the

best discriminating genes were identified with a probability
ranging from p =0.00001 to 0.0002. However, consideration
of a correction for multiple hypothesis testing, such as Bon-
ferroni, would put in doubt whether these probability values
were, in reality, significant.

Despite the similarities in the sample cohort and microar-
ray platform, differences with sample preparation and the
experimental design between the two studies needs to be iden-
tified. Firstly, The Utah Study worked with freshly isolated
bone marrow which was subsequently processed to isolate
the mononuclear cells using Ficoll. In our case, bone mar-
row was obtained from the Children’s Hospital at Westmead
Tumour Bank where it had been cryopreserved as whole sam-
ples by snap freezing in liquid nitrogen soon after aspiration.
RNA isolation from the frozen bone marrow pellet was under-
taken using a method derived specifically for this purpose [2]
and yields high quality RNA [3], which, in our hands, is
of better quality than that which can be achieved from cells
following Ficoll isolation (data not shown). All the ALL sam-
ples within our sample cohort were identified as having high
blast count, so the gene expression data should represent the
leukaemic population. Nonetheless, there is the considera-
tion that the influence of non-lymphoid and non-leukaemic
nucleated white cells may create discrepancies between the
two gene expression datasets.

Of greater importance to the interpretation of results from
these studies is the source of the control RNA used during
hybridization. The Utah Study used RNA isolated from the
HL60 cell line, which is known to be sensitive to differenti-
ation effects of culture conditions, hypoxia and confluence,
and may not represent a constant background of gene expres-
sion against which to compare the ALL samples. Indeed,
a number of the genes identified in this study are known
to be influenced by the differentiation status of HL60 cell
lines. Endoglin is known to be upregulated in myeloid cells
undergoing macrophagic differentiation for which phorbal
12-myristate 13-acetate treated HL60 is an experimental
paradigm [6], whilst selectin-L expression is diminished
in retinoic acid treated HL60 cells [7]. Further, The Utah
Study was comparing diseased cells to an attenuated dis-
eased cell which effectively defeats their stated purpose of
using microarray technology to identify relevant pathways
which may provide the targets for novel therapeutics [1]. In
our experiments however, bone marrow from normal (non-
malignant) donors was pooled from different groups of 10
individual samples. As such, for our comparison, the ALL
bone marrow tissue was compared to normal tissue repre-
senting the normal population.

The identification of differentially expressed genes within
microarray data is often performed to identify key biomarkers
which can be applied to diagnostic purposes, investigated for
functional activity or become the target for therapeutic strate-
gies. Endoglin was identified in the original microarray report
as significant in the distinction between B-lineage and T-
lineage ALL, and was confirmed using rtPCR on the training
sample cohort. This was, however, not confirmed as differ-
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entially expressed by rtPCR on an independent test set. This
set only contained two T-lineage ALL samples [1]. Indeed,
endoglin showed no differential expression which segregated
with patient immunophenotype in our sample cohort either.
However, examination of expression values across our sam-
ple cohort did indicate a distinct range of expression values
which was unlike any of the other genes identified by The
Utah Study except for the known lineage related genes CD3
and MHC gene family. It is well established that T-lineage
ALL are more difficult to treat than B-lineage ALL. Hence,
when making an alternative comparison involving other clin-
ical criteria, the identification that endoglin expression at
diagnosis could distinguish childhood ALL on the basis of
patient outcome (5-year event free survival versus relapse or
death) (Fig. 2A), stands to reason and reflects a unique bio-
logical role for endoglin in childhood ALL. This result may
reflect how the microvascular environment influences patient
response to therapy. Similarly, it may reflect the presence
of more proliferative subpopulations of haematopoietic stem
cells [8]. The prognostic potential of endoglin expression in
bone marrow for childhood ALL should be explored further.

More significantly, the results from this study indicate that
reductionist data analysis is unlikely to identify biomarkers
or small subsets of genes, the expression of which will univer-
sally segregate patients into subpopulations, especially when
relatively small numbers of samples are collated to represent
a complex and heterogeneous diseases such as childhood
ALL. For this to be achieved the high dimensionality of
microarray data necessitates that samples in the numbers
approximating the number of gene features on a microar-
ray be collected before we can confidently move forward.
In this case, our results with endoglin highlight that such
reductionist approaches may oversimplify expected relation-
ships and obscure significant biological interactions. Rather
consideration of the inclusion of all clinical and biological
features of childhood ALL into the data analysis method-
ology will potentially increase the diagnostic potential and
knowledge discovery which can be gained from microarray
gene expression investigations.
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