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Neuroblastoma is a malignancy of the developing sympathetic 
nervous system that often presents with widespread metastatic 
disease, resulting in survival rates of less than 50%. To determine 
the spectrum of somatic mutation in high-risk neuroblastoma, 
we studied 240 affected individuals (cases) using a combination 
of whole-exome, genome and transcriptome sequencing as part 
of the Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET) initiative. Here we report a low median 
exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) 
and notably few recurrently mutated genes in these tumors. 
Genes with significant somatic mutation frequencies included 
ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an 
additional 7.1% had focal deletions), MYCN (1.7%, causing 
a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, 
potentially pathogenic germline variants were significantly  
enriched in ALK, CHEK2, PINK1 and BARD1. The relative 
paucity of recurrent somatic mutations in neuroblastoma 
challenges current therapeutic strategies that rely on frequently 
altered oncogenic drivers.

Neuroblastoma is an embryonal malignancy of early childhood with 
a poor prognosis for individuals diagnosed at over 18 months of 

age with disseminated disease, accounting for 12% of all childhood 
cancer-related deaths1,2. Despite multimodal chemotherapeutic and 
immunotherapeutic strategies that have improved the survival of  
individuals with high-risk disease3,4, a disproportionate number 
of these individuals will die or suffer profound treatment-related  
morbidity5. New therapeutic approaches are needed to improve cure 
rates while minimizing toxicity.

Highly penetrant, heritable mutations in ALK or PHOX2B account 
for the majority of familial neuroblastomas6–9. In individuals with spo-
radic disease, genome-wide association studies have identified multiple 
DNA polymorphisms influencing neuroblastoma susceptibility and 
clinical phenotype10–15. Somatically acquired amplification of MYCN 
and hemizygous deletions of chromosomes 1p and 11q are highly recur-
rent and associated with poor prognosis16. Although the chromosomal 
aberrations are useful as prognostic biomarkers of patient outcome, 
there remain few known oncogenic drivers of the malignant process.

Three recent studies have together reported genome or exome 
sequence analysis of 162 cases with neuroblastoma17–19. Molenaar 
and colleagues17 reported an overall low coding somatic mutation 
count (12 per tumor), few recurrent mutations beyond those in ALK 
(7% of cases) and TIAM1 (3%), a high frequency of chromothripsis 
in stage 3 and 4 tumors (18%) and frequent mutation of RAC-RHO 
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pathway genes regulating neuritogenesis. Cheung and colleagues18 
found ATRX loss-of-function mutations and deletions associated 
with neuroblastoma in adolescents and young adults. Sausen and col-
leagues19 uncovered recurrent mutation or focal deletion of ARID1A 
and ARID1B in 11% of cases using a low-coverage whole-genome 
and targeted sequencing strategy. Given the genetic heterogeneity 
described in neuroblastoma, we sought to build on these studies 
through a focused analysis of a large cohort of high-risk stage 4 neu-
roblastomas, in which the need for translational advances are most 
pressing, using several genomic approaches.

We examined 240 matched tumor and normal (blood leuko-
cyte) pairs from individuals older than 18 months of age at diag-
nosis with metastatic (stage 4) disease by whole-exome sequencing 
(WES; 221 cases), whole-genome sequencing (WGS; 18 cases, 1 of 
which was sequenced using two different platforms) or both (1 case; 
Supplementary Table 1 and Supplementary Note). WES of ~33 Mb  
of coding sequence yielded an average of 124× coverage, with 87% 
of bases being suitable for mutation detection (Supplementary 
Fig. 1 and Supplementary Table 2). We used two different WGS 
approaches, Illumina20 (ten cases, 29.7× average coverage) and 
Complete Genomics21 (ten cases, 59.9× average coverage), to inter-
rogate structural variation and supplement mutation detection (pow-
ered to detect mutations at 86% and 94% of mappable exonic bases, 
respectively). To assess the expression of mutations and fusion tran-
scripts, we generated over 10 Gb of RNA sequencing (RNA-seq) data 
for the ten cases sequenced by Illumina WGS.

Across the coding regions of the 240 cases, we detected 5,291 can-
didate somatic mutations in 3,960 genes (Supplementary Table 3). 

We found a median of 18 candidate exomic mutations (17 substitu-
tions and 1 insertion or deletion (indel)) per tumor (range, 0–218 
mutations), of which 14 were nonsilent mutations that are predicted 
to alter protein sequences (range, 0–158 nonsilent mutations; median, 
12 missense, 1 nonsense, 1 indel and 0 splice site; Supplementary 
Table 1). This corresponds to a median frequency of 0.60 mutations 
per Mb (0.48 nonsilent mutations per Mb), considering only exonic 
bases with sufficient data for mutation detection (Fig. 1). This fre-
quency is consistent with unselected neuroblastomas17–19, medul-
loblastoma22 and hematopoietic malignancies23,24, is twice that of 
pediatric rhabdoid cancer25 and is markedly less than that of adult 
solid tumors24,26,27, particularly those with strong environmental con-
tribution24,28–31. We verified 241 of the 282 coding candidate somatic 
substitutions (85%; 525 of 605, including noncoding substitutions) 
and 26 of the 41 coding indels (63%; 27 of 79, including noncoding 
substitutions) using mass-spectrometric genotyping or PCR-based 
resequencing (Supplementary Note).

We did not find a correlation between mutation frequency and 
age at diagnosis (P = 0.28, Spearman) or other clinical variables 
(Supplementary Table 4). Consistent with a postulated limited 
environmental contribution to neuroblastoma development1,  
context-specific transition and transversion rates were not elevated 
compared to other cancers (Supplementary Fig. 2), and we did 
not detect sequencing reads corresponding to pathogenic viruses 
(Supplementary Table 5). Two tumors with markedly increased 
mutation frequencies (7.27 and 4.29 mutations per Mb) harbored 
alterations of DNA repair genes (nonsense mutation and deletion of 
MLH1 and nonsense mutation of DB1).
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Figure 1  Landscape of genetic variation in neuroblastoma. Data tracks (rows) facilitate the comparison of clinical and genomic data across cases 
with neuroblastoma (columns). The data sources and sequencing technology used were WES from whole-genome amplification (WGA) (light purple), 
WES from native DNA (dark purple), Illumina WGS (green) and Complete Genomics WGS (yellow). Striped blocks indicate cases analyzed using two 
approaches. The clinical variables included were gender (male, blue; female, pink) and age (brown spectrum). Copy number alterations indicates ploidy 
measured by flow cytometry (with hyperdiploid meaning DNA index >1) and clinically relevant copy number alterations derived from sequence data. 
Significantly mutated genes are those with statistically significant mutation counts given the background mutation rate, gene size and expression in 
neuroblastoma. Germline indicates genes with significant numbers of germline ClinVar variants or loss-of-function cancer gene variants in our cohort. 
DNA repair indicates genes that may be associated with an increased mutation frequency in two apparently hypermutated tumors. Predicted effects of 
somatic mutations are color coded according to the legend. MYCN amp, amplification of MYCN.
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Using the MutSig algorithm32, we identified six genes mutated 
at a significant frequency in the 240 tumors (q < 0.1; Table 1 and 
Supplementary Table 6). A seventh gene, NRAS, was implicated by 
restricting the analysis to genes listed in the Catalogue of Somatic 
Mutations in Cancer (COSMIC, v48)33. Using neuroblastoma data 
from our RNA-seq cohort (10 cases), the TARGET RNA microarray 
project (250 cases) and a publicly available RNA microarray project 
(416 cases)34, we determined that OR5T1 and PDE6G have very low or 
absent mRNA expression in neuroblastoma (Supplementary Fig. 3). 
Therefore, we focused our analysis on five genes with statistical and 
biological rationale for neuroblastoma involvement: ALK, PTPN11, 
ATRX, MYCN and NRAS.

ALK and PTPN11 were previously reported to be mutated in up to 
10% and 3.4% of neuroblastoma cases, respectively8,9,35–37, which is 
consistent with our screen here. All 22 somatic ALK mutations (9.2%) 
were restricted to the kinase domain, and all 7 PTPN11 mutations 
(2.9%) have been previously reported33,37–40. Although we found no 
pathogenic germline PTPN11 variants, two cases had germline ALK 
variants encoding two amino acid alterations: the pathogenic, activating  
p.Arg1275Gln alteration and the probable benign, kinase-dead 
p.Ile1250Thr alteration. Activating ALK variants were not associ-
ated with MYCN amplification (P = 0.28). Contrary to a previous 
report41, we did not find Phe1174 alterations in a higher proportion 
of cases with amplification of MYCN than of cases with wild-type ALK  
(P = 0.53). Notably, ALK was the only significantly mutated gene 
to have an association with clinical outcome, as mutation-positive 
cases had a decreased overall survival probability (P = 0.0103; 
Supplementary Fig. 4).

Loss-of-function mutations or deletions of RNA-helicase ATRX 
have recently been described in neuroblastoma17,18. We found 

putative loss-of-function ATRX alterations in 9.6% of cases (6 muta-
tions and 17 multiexon deletions; Supplementary Fig. 5). We con-
firmed previous observations18 that alterations of ATRX and MYCN 
were mutually exclusive and that ATRX alterations were enriched in 
older children (P = 0.0021; Supplementary Fig. 6). One case had an  
apparent gain of exons 18–26 with an unclear functional effect.

High-level MYCN amplification has long been known as a negative 
prognostic indicator in neuroblastoma42, but activating mutations 
have not been described. In our cohort, four cases without MYCN 
amplification had an identical p.Phe44Leu alteration. Tumors from all 
four of these cases had regional single-copy gain of chromosome 2p, 
three of which had a gain of the mutant allele. In a tumor with matched 
RNA-seq data, the mutant allele was expressed at a level twice that 
of wild type. This alteration has been documented in single cases of 
glioblastoma, medulloblastoma and pancreatic adenocarcinoma33 and 

Table 1  Genes with a significant frequency of somatic mutation across 240 neuroblastomas

Gene Description Mutations Cases Unique sites Missense Loss of functiona q
Expressed in 

neuroblastomab

ALK Anaplastic lymphoma receptor  
tyrosine kinase

22 22 7 22 0 <1.8 × 10–7 Yes

PTPN11 Protein tyrosine phosphatase,  
nonreceptor type 11

7 7 6 7 0 1.8 × 10–5 Yes

ATRX Alpha thalassemia/mental  
retardation syndrome X-linked

6 6 6 3 3 0.031 Yes

OR5T1 Olfactory receptor, family 5,  
subfamily T, member 1

3 2 3 3 0 0.040 No

PDE6G Phosphodiesterase 6G,  
cGMP-specific, rod, γ

2 2 2 2 0 0.052 No

MYCN V-myc myelocytomatosis viral  
related oncogene, neuroblastoma

4 4 1 0 0 0.093 Yes

NRAS Neuroblastoma RAS viral (v-ras)  
oncogene homolog

2 2 2 2 0 0.017  
(COSMIC only)

Yes

aNonsense, splice site or frameshift. b‘No’ indicates very low or absent mRNA expression in the RNA-seq or microarray datasets.
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Figure 2  Structural variation in neuroblastoma genomes. CIRCOS68 
plots of cases with recurrent somatic alterations labeled using TARGET 
identifiers. Chromosomes are arranged end to end in the outer-most ring. 
Mutations in significantly mutated genes are depicted in light blue outside 
of each diagram. The inside ring shows somatic copy number gains and 
losses (high-level gains are red, low-level gains are orange, and losses 
are blue) detected by WGS. The innermost arcs depict genic structural 
aberrations (gene fusions are orange and all others are black) detected 
by RNA-seq and confirmed by local reassembly of WGS reads. Nongenic 
rearrangements are not shown. The top five cases have mutations in the 
significantly mutated genes ALK, MYCN and NRAS. The bottom three 
cases each have several rearrangements of NBAS, with expressed fusion 
transcripts as annotated.
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is scored as functional by PolyPhen2 (ref. 43) (score, 0.971), SIFT44 
(score, 0), MutationTaster45 (score, 1.0) and AlignGVGD46 (score, 
C65). The residue is highly conserved across the MYC superfamily 
(pfam01056; Supplementary Fig. 7)47, and an additional tumor had a 
mutation in the homologous domain of MYC (encoding p.Thr58Ile), 
a common alteration in Burkitt’s lymphoma48. Despite the relative 
infrequency of MYCN mutations in neuroblastoma, these mutations 
may be clinically relevant if they confer MYC dependency similar to 
high-level amplification.

We next searched, as previously described22,27, for enrichment of 
somatic mutations in components of canonical pathways49, chromatin 
modifiers or splice factors50–52. Of 857 gene sets, 12 were enriched 
for somatic mutation (q < 0.1; Supplementary Table 7), 8 of which 
implicated RAS-MAPK signaling components. Contrary to a previous 
report17, we did not find any mutations in TIAM1 or any enrichment 
of mutations in genes regulating neuritogenesis and GTPase activity 
through the RAC-RHO pathway (q > 0.275; Supplementary Note). 
However, an analysis of the mutation list from the previous report17 
using our methods recapitulated their finding of significant mutation 
frequencies in guanine nucleotide exchange factors (q = 6.26 × 10–3) 
and GTPase activating proteins (q = 3.15 × 10–5) but not in any of 
the 12 pathways identified by analysis of our cohort (q ≥ 0.848). This 
comparison suggests limitations to the current gene set and pathway 
analysis methods, especially when mutation frequencies are low.

Somatic mutations in FANCM and FAN1 in two cases with chro-
mothripsis have been previously reported17. Although we found three 
cases with FANCM mutations, Fanconi anemia genes were not enriched 
for somatic mutation (q = 0.764; Supplementary Table 7), and we did 
not detect any exonic breakpoints in cases with FANCM mutations. 
This is perhaps not surprising given the relatively small portion of the 
genome queried by exome sequencing, so we cannot rule out an asso-
ciation of FANCM mutations and chromothripsis at this time.

Of the five recurrently mutated genes reported previously19, we 
found mutations in ALK, ARID1A (encoding p.Gly1139Val and 
p.Gly1942Asp) and VANGL1 (encoding p.Gly308Trp). Two cases 
had focal deletions of ARID1B: individual PASLGS had an exon 
2 deletion (Fig. 2 and Supplementary Table 8) and individual 
PARGKK had loss of exons 1–3. Of the 113 genes with apparent 
hemizygous mutations on chromosomes 1p, 3p and 11q (arms fre-
quently lost in neuroblastoma), only PBRM1 had loss-of-function 
mutations in two cases, whereas all other variations were singletons 
(Supplementary Note).

To identify rare germline variants predisposing to neuroblastoma, 
we searched for enrichment of clinically annotated variants from the 

ClinVar database and loss-of-function variants in cancer genes53–55 in 
the blood-derived DNA samples from our WES cohort compared to 
normal DNAs from 1,974 European American individuals sequenced 
by the Exome Sequencing Project (ESP)56 (Online Methods, 
Supplementary Tables 9 and 10 and Supplementary Fig. 8). This 
approach nominated five genes with candidate germline pathogenic 
variants: ALK, CHEK2, PINK1, TP53 and BARD1 (Table 2). The ALK 
variant encoding p.Arg1275Gln has been reported as the most com-
mon pathogenic variant in familial neuroblastoma8,9. Three CHEK2 
germline variants destabilize the protein57,58 and are reported cancer 
predisposition alleles58,59 that have not been previously described in 
neuroblastoma. The TP53 variant encoding p.Pro219Ser has been 
associated with Li-Fraumeni syndrome60, consistent with previous 
reports of neuroblastomas occurring in these families61. Two PINK1 
variants are associated with Parkinson’s disease62–64, and this gene is 
known to be transcriptionally regulated by MYC proteins65. In addi-
tion, two loss-of-function variants in BARD1, a recently discovered 
neuroblastoma susceptibility locus14, support the concept that rare 
variants may exist at loci where common polymorphisms affect dis-
ease occurrence. Another member of the BRCA complex, PALB2, had 
a germline variant that was predicted to ablate a splice site in one case 
(Table 2) and a somatic missense mutation in another (Fig. 1 and 
Supplementary Table 3). Taken together, our conservative approach 
to identifying putatively pathogenic germline variants suggests that 
these events may have a larger role in neuroblastoma initiation than 
was previously suspected.

Structural analysis of the 19 cases sequenced by WGS identified 
a median of 41.5 breakpoints per case (range, 29–143; Fig. 2 and 
Supplementary Fig. 9). Overall, 83 rearrangements affected 97 genes, 
22 of which had evidence in the RNA-seq data (Supplementary  
Table 8). Whereas we found 11q;17q translocations in 3 of the 19 
cases (1 case with two events), we did not find any recurrent fusion 
transcripts in our cohort. NBAS, located near MYCN on the short 
arm of chromosome 2, was the most commonly rearranged gene 
and harbored 11 distinct events in three cases with amplified MYCN  
(Fig. 2). We found substantial local rearrangement in three cases, 
all affecting the vicinity of MYCN and NBAS loci, but the numerous 
complex copy number states and retention of heterozygosity in lower–
copy number regions are more consistent with an episomal model66 
than chromothripsis67 in the 19 cases evaluated here (Supplementary 
Fig. 10). We found no other areas of clustered chromosomal break-
points suggestive of chromothripsis in the cases sequenced by WGS, 
and there were no clusters evident within coding regions of 142 cases 
sequenced using WES of native DNA.

High-risk neuroblastomas harbor a very low frequency of recur-
rent somatic mutations. We do not expect that substantial numbers 
of mutations went undetected here, as the tumor purities were high 
and identical methods have identified recurrent mutations in other 
tumor types22,23,26,27,30. The relative paucity of recurrent mutations 
challenges the concept that druggable targets can be defined in each 
patient by DNA sequencing alone. Our data suggest that the majority 
of high-risk neuroblastomas may be driven by rare germline variants 
and/or copy number alterations and epigenetic modifications during 
tumor evolution. The notable lack of precisely defined genomic causes 
of this highly aggressive pediatric neoplasm reinforces the need to 
understand the interplay of host genetic factors, somatic mutations, 
chromosomal abnormalities and epigenetic alterations in the context 
of nervous system development.

URLs. Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET), http://target.cancer.gov/; Broad Institute 

Table 2  Candidate pathogenic germline variants in 222 cases with 
neuroblastoma sequenced by WES

Gene
Subject  
identifier

Genome position 
(build hg19) cDNA change Protein change

ALK PARVLK Chr2:29,432,664 c.3824G>A p.Arg1275Gln

CHEK2 PAKXDZ Chr22:29,121,242 c.433C>T p.Arg145Trp

CHEK2 PAPTFZ Chr22:29,121,015 c.542G>A p.Arg181His

CHEK2 PARJMX Chr22:29,121,018 c.539G>A p.Arg180His

PINK1 PANYBL Chr1:20,972,133 c.1040T>C p.Leu437Pro

PINK1 PATINJ Chr1:20,971,042 c.836G>A p.Arg279His

BARD1 PAHYWC Chr2:215,657,051 c.334C>T p.Arg112*

BARD1 PATGWT Chr2:215,595,215 c.1921C>T p.Arg641*

TP53 PAICGF Chr17:7,578,194 c.655C>T p.Pro219Ser

PALB2 PAPZYZ Chr16:23,646,182 c.1684+1C>A Splice at Gly562

cDNA, complementary DNA; the asterisks indicate the introduction of a stop codon 
after the amino acid listed.
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Cancer Genome Analysis tools, http://www.broadinstitute.
org/cancer/cga/; ClinVar, http://www.ncbi.nlm.nih.gov/clinvar/; 
Familial Cancer Database, http://www.familialcancerdatabase.nl/; 
Human DNA repair genes, http://sciencepark.mdanderson.org/labs/
wood/DNA_Repair_Genes.html; National Heart, Lung, and Blood 
Institute Grand Opportunity Exome Sequencing Project, https://
esp.gs.washington.edu/drupal/; International Agency for Research 
on Cancer TP53 Database, http://p53.iarc.fr/; Complete Genomics 
Analysis Tools, http://www.completegenomics.com/analysis-tools/
cgatools/; ALEXA RNA-seq analysis tools, http://www.alexaplatform. 
org/; Picard analysis tools, http://picard.sourceforge.net/; The  
R Project for Statistical Computing, http://www.r-project.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence data used for this analysis are available in 
dbGaP under accession number phs000467.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Summary. Paired tumor and normal DNA from 240 cases with high-risk neuro
blastoma were identified from the Children Oncology Group biobank on the 
basis of subjects having metastatic disease and, preferably, being between  
18 months and 5.5 years of age at diagnosis. Whole-genome sequences were gen-
erated for 19 of these pairs using two technologies: nine cases were sequenced by 
Illumina sequencing by synthesis20, nine by Complete Genomics probe-anchor 
ligation21 and one by both methods. RNA-seq data were generated for the ten 
cases sequenced by Illumina WGS. Whole-exome sequences of 222 pairs were 
generated using in-solution hybrid capture69 followed by Illumina sequencing. 
Phi29-based WGA was used to generate sufficient tumor and matched normal 
DNA templates from 80 cases. Reads were aligned to build hg19/GRCh37 
of the human genome reference sequence using Burrows-Wheeler Aligner 
(BWA)70, and somatic mutations were detected using SNVmix71 (Illumina 
genomes and RNA-seq), muTect27 (exomes) and version 2 of the Complete 
Genomics’ custom caller21,72 (Complete Genomics genomes). Mutations were 
annotated using Oncotator, and MutSig32 was used to identify genes mutated at 
significant frequencies. PathSeq73 was used to query exome datasets for reads 
supporting viral infection. These and other tools used for exome sequence 
analyses are described on the Broad Institute Cancer Genome Analysis website 
(see URLs). Rearrangements were detected from whole-genome data using 
trans-ABySS de novo assembly74 and Complete Genomics’ custom software75. 
Somatic mutations and structural alterations were confirmed by mass- 
spectrometric genotyping (Sequenom) or PCR followed by Sanger or  
Illumina sequencing.

Sample selection and preparation. This study focused on high-risk neuro
blastoma, and we attempted to reduce heterogeneity by restricting eligibility 
to subjects with stage 4 (metastatic) disease and, preferably, those between 1.5 
and 5.5 years of age at diagnosis (median, 3.4 years of age; range, 1.5–16.5 years 
of age) (Supplementary Table 1). All specimens were obtained at original  
diagnosis after informed consent at Children’s Oncology Group member 
institutions. Males outnumbered females 149 to 91 (62%). Amplification of 
the MYCN oncogene was found in 77 tumors (32%) by fluorescence in situ 
hybridization, and 131 (55%) tumors had a diploid DNA index by flow cyto
metry. Flash-frozen tumor samples were analyzed for percent tumor content 
by histopathology, and samples with <75% tumor content were excluded. The 
Children’s Hospital of Philadelphia Institutional Review Board was responsible 
for oversight of this study.

Genome sequencing and analysis. Illumina sequencing technology (BC Cancer 
Agency). Whole-genome and transcriptome libraries of ten cases sequenced 
using Illumina technology at the BC Cancer Agency were constructed from 
input amounts of 2–4 µg DNA and 3–10 µg DNaseI-treated total RNA, 
respectively, following previously described protocols76,77. The sequencing 
was carried out using Illumina GAIIx instruments as per the manufacturer’s 
instructions. Paired-end reads generated from genome and transcriptome 
sequencing were aligned to the hg19/GRCh37 reference human genome 
assembly78 using BWA70 version 0.5.7. RNA-seq reads were processed as pre-
viously described79,80.

Single nucleotide variant (SNV) detection in the Illumina tumor genome 
and transcriptome data was performed using SNVMix2 with filtering to 
include SNVs such that the combined probability of either heterozygous or 
homozygous SNV was greater than 0.99 (ref. 71). Reads flagged as poor quality  
according to the Illumina chastity filter, duplicate reads and reads aligned 
with a mapping quality <40 were excluded from SNV calling. The somatic 
status of SNV calls was determined using read evidence from the SAMtools 
version 0.1.13 pileup81 constructed at the variant positions in the matched 
normal genome. Positions with normal genome coverage by least five unique 
reads supporting the reference allele were considered somatic. The candidate 
somatic SNV calls were inspected using IGV82, and only those calls confirmed 
by visual inspection were used in the analysis.

Short insertions and deletions were detected in the tumor and normal  
Illumina WGS bam files using two software programs, Pindel83 and 
SAMtools81. The mean of read-pair insert sizes were calculated for all samples  
to be ~400 bp, and this value was used in each Pindel run. The Pindel short 
insertion output was filtered to select events that mapped to annotated genes 

(Ensembl59). Candidate somatic short insertion events that recurred in at least 
two cases were manually reviewed using the Integrative Genomics Viewer82. 
The output from SAMtools pileup and varFilter functionality81 run separately 
on normal and tumor libraries were filtered to identify somatic events. In the 
normal samples, any event with a total coverage of less than eight was dis-
carded. In the tumor libraries, only indels supported by at least 16% of reads 
at a locus were considered. After the filtering, any indel present in one or 
more normal libraries was flagged as germline. None of the candidate somatic 
coding indels from the Pindel or SAMtools analysis was confirmed by manual 
inspection using IGV82, which is consistent with the low frequency of somatic 
indels in the rest of the cohort (median of one indel across all other WGS and 
WES cases, and 86 cases had no indels).

Copy number analysis of the Illumina WGS data was conducted using 
a previously described hidden Markov model (HMM) method84. Briefly,  
50 million reads with mapping qualities >10 were randomly selected from 
matched tumor and normal data. Reads were divided into bins of 200 adjacent 
alignments, and the ratio of tumor to normal reads was calculated for each bin. 
These ratios were then normalized by subtracting the median of these ratios 
across the whole genome. This resulted in a metric of relative read density from 
the tumors and matched normal samples in bins of variable length along the 
genome, where bin width was inversely proportional to the number of mapped 
reads in the normal genome. GC bias correction was applied, and an HMM 
was used to classify and segment the tumor genome into continuous regions 
of somatic copy number loss (HMM state 1), neutrality (HMM state 2), slight 
gain (HMM state 3), gain (HMM state 4) or high gain (HMM state 5).

To identify candidate transcript rearrangements, we used ABySS85 to per-
form de novo transcriptome assembly of ten RNA-seq datasets. To identify 
known and new transcript structures, the assembled contigs were aligned 
to the hg19 (GRCh37) human reference genome assembly and compared to 
annotated transcript models using the trans-ABySS pipeline74. This approach 
identified all contigs with two discrete genomic BLAT alignments. The top 
five scoring alignments were manually inspected to remove probable false-
positive events caused primarily by few supporting reads. Local rearrange-
ments were identified from contigs with single, gapped BLAT alignments 
and supporting read evidence from manual review. Targeted assembly of the 
candidate rearrangement regions was performed to validate the events in the 
genomic data.

Complete Genomics sequencing technology. Whole-genome sequencing 
libraries of ten cases were constructed from 3.5 µg of DNA and sequenced 
using Complete Genomics Inc. (CGI) technology21. Sequencing and align-
ment of reads to the hg19/GRCh37 reference human genome assembly was 
performed by the CGI Cancer Sequencing service, analytic pipeline version 1  
(see URLs). Mutation call files provided by this service were used to extract 
somatic mutations using the criteria in Supplementary Table 11. CGI also 
provided flat files containing candidate rearrangements and segmental relative 
copy number ratios derived from normalized read counts from matched tumor 
and normal samples. Copy number calls were converted to the five HMM 
states described above using the criteria listed in Supplementary Table 12.

Exome sequencing and analysis. The generation, sequencing and analysis of 
222 pairs of exome libraries at the Broad Institute was performed using a pre
viously described protocol27. Because of the small quantities of DNA available, 
80 DNA samples were amplified using Phi29-based multiple-strand displace-
ment whole-genome amplification (Repli-g service, QIAgen). Exonic regions 
were captured by in-solution hybridization using RNA baits similar to those pre
viously described27 but supplemented with additional probes capturing addi-
tional genes listed in ReqSeq78 in addition to the original Consensus Coding 
Sequence (CCDS)78 set. In total, ~33 Mb of genomic sequence was targeted, 
comprising 193,094 exons from 18,863 genes annotated by the CCDS86 and 
RefSeq86 databases as coding for a protein or microRNA (accessed November 
2010). Sequencing of 76-bp paired-end reads was performed using Illumina 
Genome Analyzer IIx and HiSeq 2000 instruments. Reads were aligned to the 
hg19/GRCh37 build of the reference human genome sequence78 using BWA70. 
PCR duplicates were flagged in the bam files for exclusion from further ana
lysis using the Picard MarkDuplicates tool. To confirm sample identity, copy 
number profiles derived from sequence data were compared with those derived 
from microarray data when available. Candidate somatic base substitutions 
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were detected using muTect (previously referred to as muTector27), and indels 
were detected using IndelGenotyper27. Segmental copy number ratios were 
calculated as the ratio of tumor fraction read depth to the average fractional 
read depth in normal samples for that region.

Removal of oxidation of guanine bases (oxoG) library preparation artifacts. 
Cases sequenced using WGA and native DNA were sequenced more than  
8 months apart using the Sequencing Platform at the Broad Institute. Initial 
comparison of candidate mutation calls from these two datasets identified a 
preponderance of apparent G>T or C>A substitutions of low allele fraction 
(<0.15) and within specific sequence contexts (Supplementary Fig. 2a). We 
subsequently characterized this artifact and developed a method to detect 
and remove these events. In brief, these artifacts are introduced at the DNA-
shearing step of the library construction process and arise from oxoG by high-
energy sonication. During downstream PCR, oxoG bases preferentially pair 
with thymine rather than cytosine, resulting in apparent G>T or C>A substitu-
tions of low allele fraction that are enriched within specific sequence contexts 
(Supplementary Fig. 2b). Consistent with this mechanism, the intensity of the 
sonication process was increased with the introduction of a new 150-bp shear-
ing protocol between preparation of the WGA and native DNA samples.

The number of artifacts in a library was apparently sample dependent 
(Supplementary Fig. 2c), and these events were found in unmatched tumor 
and normal libraries. In some cases, thousands of candidate mutations were 
called in cases with a heavily affected tumor sample and an unaffected normal 
sample. However, nearly every sample had at least one such artifact, and we 
have observed similar events in publicly available datasets from other centers,  
suggesting a common artifact mode that was exacerbated in some of our  
samples. To address this problem, we devised a method to differentiate oxoG 
artifacts from bona fide mutations.

Because of the modification of only one strand of a GC base-pair (that is, 
only the G base), reads supporting the artifact have a characteristic read orien-
tation conferred by adaptor ligation. Therefore, all reads supporting an artifact 
were almost exclusively derived from the first or second read of the Illumina 
HiSeq instrument. Bona fide variants are supported by near-equal numbers 
of first and second reads. We made use of the skewed read-orientation com-
binations and low allele fractions characteristic of this artifact to identify and 
remove oxoG artifacts from mutation calls in our cohort (meaning removal of 
all variants with allele fraction <0.1 or exclusively supported by a single read 
orientation). This method restored the mutation pattern and frequency seen 
in earlier sequencing of WGA cases (Supplementary Fig. 2d).

Verification of somatic mutations and rearrangements. We used a combina-
tion of genotyping and sequencing technologies to verify random candidate 
mutations (PCR/Sanger and PCR/HiSeq sequencing of candidates from the 
Complete Genomics and BC Cancer Agency Illumina WGS and RNA-seq 
data), as well as mutations supportive of our significance analyses (Sequenom 
and PCR/MiSeq of WES and WGS data; Supplementary Tables 13 and 14). 
Combining all of the validation experiments resulted in overall validation rates 
of 87% for substitutions (525/605 candidates, 241/282 coding) and 34% for indels 
(27/79 candidates, 26/41 coding). Some mutations were verified using multiple 
technologies, and therefore the total number of candidate mutations verified is 
lower than the sum total of mutations described in the Supplementary Note. 
See the Supplementary Note for details and cross-platform comparisons.

Integrated analysis of somatic variation from exome and genome datasets. 
Somatic mutations detected in the WGS, WES and RNA-seq datasets were 
annotated using Oncotator (see URLs). Genes mutated at a statistically signifi-
cant frequency were identified using MutSig32, a method that identifies genes 
with mutation frequencies greater than those expected by chance given the 
detected background mutation rates, gene length and callable sequence in each 
tumor and normal pair. The relationship between mutation frequency and age 
of diagnosis was tested using the Spearman rank test. The implementation of 
the Kolmogorov-Smirnov test in R version 2.11.1 (ks.test) was used to test 
differences in mutation frequency distributions of several clinical variables 
(Supplementary Table 4).

To identify frequently mutated groups of genes, we applied the MutSig algo-
rithm to sets of genes rather than individual genes. These gene sets comprised 

853 ‘canonical pathways’ curated by Gene Set Enrichment Analysis49, as well as 
lists of chromatin modifiers and splice factors curated from the literature50–52 
(Supplementary Table 6; ‘CHROMATIN_MODIFIERS’, ‘EPIGENETIC_
COMPLEXES’, ‘SPLICE_FACTORS’ and ‘DNA_METHYLATION’). 
Significance analysis of mutations and pathways reported by Molenaar et al.17 
are provided in the Supplementary Note.

Expression analysis of significantly mutated genes. Alignments of RNA-seq 
data were used to estimate gene expression. Gene coverage analysis was based 
on Ensembl gene annotations (homo_sapiens_core_59_37d). These annota-
tions were collapsed into a single gene model containing the union of exonic 
bases from all annotated transcripts of the gene. The analysis used SAMtools 
pileup to get the per-base coverage depths and excluded reads with mapping 
quality <10 and reads flagged as poor quality according to the Illumina chas-
tity filter. Duplicate reads were kept in this analysis. The reads per kilobase of 
exon model per million mapped reads (RPKM) metric was used to estimate 
gene expression87. RPKM was calculated using the formula (number of reads 
mapped to all exons in a gene × 109)/(NORM_TOTAL × sum of the lengths 
of all exons in the gene), where NORM_TOTAL is the total number of reads 
that are mapped to nonmitochondrial exons.

The expression threshold for each RNA-seq library was determined as 
the 95th percentile of the distribution of the expression of silent intergenic 
regions computed and defined as described on the ALEXA platform website88. 
Using this threshold, we determined that ALK, PTPN11, ATRX, MYCN and 
NRAS were expressed above background in each of the ten cases with available  
RNA-seq data. In contrast, OR5T1 and PDE6G were not expressed above back-
ground in at least nine out of ten cases in our cohort.

The TARGET neuroblastoma Affymetrix Human Exon Array data (S.A., L.J., 
R.S., Tu, Y., Hadjidaniel, M.D., E.F.A., M.D.H., W.B.L., J.M.G.-F., J.S.W., Guo, 
X., D.S.G., M.A.S., Khan, J. J.M.M. & R.C.S., unpublished data) of 250 primary 
diagnostic tumor specimens was normalized by quantile normalization and 
summarized using robust multichip average (Affymetrix Power Tools software 
package version 1.12). This dataset includes samples from 220 cases with high-
risk disease and 30 cases with low-risk disease. The transcript-level data of 
the core probe sets for each sample were averaged on the basis of gene symbol 
annotations provided by the manufacturer (17,422 unique genes). To identify 
the relative expression of genes in neuroblastomas, the percentile values of 
ALK, PTPN11, ATRX, MYCN, NRAS, OR5T1 and PDE6G were computed from 
the cumulative distribution function calculated for each sample’s gene profile. 
The same analysis was conducted on the Agilent 44K microarray data (19,528 
unique genes) of 416 neuroblastoma tumors from the MicroArray Quality 
Control (MAQC)-II study (Gene Expression Omnibus GSE16716; ArrayExpress 
E-MATB-179)88. This dataset includes tumors from patients diagnosed with 
high-risk (n = 135), intermediate-risk (n = 34) or low-risk (n = 247) neurob-
lastoma. Su et al.89 demonstrated that individual tissues express 30–40% of all 
genes by comparing microarray expressions across panels of human and mouse 
tissues. The median percentiles for ALK, PTPN11, ATRX, MYCN and NRAS 
in both datasets are well within the percentile range of genes that are probably 
expressed in a tissue. The low median percentiles for OR5T1 and PDE6G (less 
than the 40th and 25th percentiles in the TARGET and MAQC-II data) suggest 
low expression in neuroblastoma tumors (Supplementary Fig. 3).

Germline variant analysis. Detection of pathogenic germline variation at a 
basepair resolution in a cohort of patients with cancer is complicated by the 
selection of an appropriately matched and sized control population, relatively 
high carrier frequencies for unrelated disorders and complex genetics under-
lying cancer predisposition. To nominate germline variants predisposing to 
neuroblastoma, we searched for enrichment of putative functional variants 
in the blood-derived DNA samples from our cohort sequenced by WES com-
pared to normal DNAs from 1,974 European American individuals sequenced 
by the National Heart, Lung, and Blood Institute Grand Opportunity ESP56. 
As indel calls from the ESP cohort were not publicly available at the time of 
our study, we did not include them in our analysis.

To ensure consistency and accuracy of germline variant detection, all 
cases with neuroblastoma sequenced by WES were called simultaneously 
with 800 cases sequenced by WES from the 1000 Genomes Project using the 
UnifiedGenotyper from the Genome Analysis Toolkit. A principal component 
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analysis of the genotype calls was performed to determine the ethnic back-
ground of our cases (Supplementary Fig. 7) with respect to three 1000 
Genomes populations. As over 80% of our cohort was of European or admixed 
European ancestry, we downloaded genotyping calls and coverage information 
from 1,974 European American individuals available on the ESP website to 
serve as a control population. To focus our analysis on rare variation consist-
ent with the low prevalence of neuroblastoma, we removed from both datasets 
all variants present in individuals sequenced as part of the 1000 Genomes 
Project. We then generated two lists of rare variants: overlaps with clinically 
reported variants recorded in ClinVar (downloaded 4/27/2012; 284 variants 
in neuroblastoma and 2,947 in ESP) and loss-of-function variants in any of 
924 genes in the Cancer Gene Census53, the Familial Cancer database54 or a 
list of DNA repair genes55 (86 neuroblastoma and 1,068 ESP). We then tested 
each gene for significant enrichment of variants in the neuroblastoma cohort 
compared to the ESP cohort (one-tailed Fisher’s exact test; Supplementary 
Tables 7 and 9).

The germline ClinVar analysis uncovered four genes of significance driven 
by single variants present at greater frequency in neuroblastoma compared to 
ESP: CYP2D6, NOD2, SLC34A3 and HPD. All of these variants are present at 
low frequency in an expanded European American ESP cohort (rs5030865 
in 1/8,524 chromosomes, rs104895438 in 5/8,600, rs121918239 in 14/8,514 
and rs137852868 in 11/8,600), suggesting they are benign polymorphisms. 
Note that although candidates detected by this approach were not significant 
after correction for multiple testing, we believe there is sufficient biological 
rationale and supporting evidence for validation in larger cohorts. We also 
looked for overlap with sites recorded in COSMIC33. This analysis identified 
a TP53 variant associated with Li-Fraumeni syndrome60.
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