Analyzing array data using supervised methods
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pharmacogenomics are reviewed.

As the sequencing and gene annotation projects
of entire genomes of many species are headed
towards completion 13, massive mapping efforts
are now focused on the genes’ functions and
interactions. Microarray (also known as DNA
chip, gene chip or biochip) technology is a rapid
method of analyzing large numbers of genes
simultaneously. A DNA microarray system usu-
ally consists of DNA probes formatted on a
microscale on a glass substrate surface, together
with instruments to read reporter (fluorescent)
molecules (scanner) and to analyze the data
(images) generated. Gene transcripts or genomic
DNA extracted from samples are labeled with
reporter molecules and hybridized to the probes
formatted on the slides. For two-color fluores-
cence systems, the relative abundance of the
sequences hybridized to each DNA probe is sub-
sequently read from the glass slides. The glass
slides can be constructed using:

 double stranded complimentary DNA clones
(cDNA arrays) [2]

« short oligonucleotides (~ 23 mer) synthesized
in situ [3)

« synthesized long oligonucleotides (3070 mer) g

e genomic clones [s]

The microarray technology has been reviewed
elsewhere [6-8]. This review is limited to the anal-
ysis of gene expression measurements generated
by DNA microarrays.

Two major designs of microarray expression
experiments exist: time series and static. In time
series experiments, which for many experimental
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Pharmacogenomics is the application of genomic technologies to drug discovery and
development, as well as for the elucidation of the mechanisms of drug action on cells and
organisms. DNA microarrays measure genome-wide gene expression patterns and are an
important tool for pharmacogenomic applications, such as the identification of molecular
targets for drugs, toxicological studies and molecular diagnostics. Genome-wide
investigations generate vast amounts of data and there is a need for computational
methods to manage and analyze this information. Recently, several supervised methods, in
which other information is utilized together with gene expression data, have been used to
characterize genes and samples. The choice of analysis methods will influence the results
and their interpretation, therefore it is important to be familiar with each method, its
scope and limitations. Here, methods with special reference to applications for

systems have so far been limited to cell culture
experiments (cell lines), each experiment corre-
sponds to a discrete measured time point. Poten-
tial applications include investigations of gene
expression responses, for different genotypes, to
external stimuli, such as drugs, environment or
hormones. In static applications each experiment
typically corresponds to a different tissue, cell
line or blood sample. In terms of analysis objec-
tives, one aims at relating the measured gene
expression patterns to phenotypes, such as diag-
nosis, outcome, treatment response or drug
resistance and in this process determine the most
important genes for the questions posed.
Approaches to the computational analysis of
gene expression data can be separated into two
groups: unsupervised and supervised. In unsuper-
vised methods the gene expression patterns are
grouped based solely on the expression data.
Unsupervised methods are particularly useful to
analyze the data in an exploratory fashion, for
example, to enable the formulation of novel
hypotheses or to discover experimental artifacts at
an early stage of investigation. If one has some
prior information or hypothesis about which
samples or genes are expected to group together,
this information can be utilized in a supervised
method. The main reason for choosing a super-
vised method is that one desires a classifier or pre-
dictor. To use a supervised method, one has to
know the ‘correct’ classification for at least some
of the samples, which are to be used as a training
set to calibrate the method. Therefore, the choice
of method to analyze the data is a fundamental
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Table 1. Methods used for array data analysis.

Category
Unsupervised clustering

Supervised discriminatory gene

classifiers

Supervised machine learning

classifiers

Method

Hierarchical clustering, K-means
clustering, MDS, self-organizing
maps

F-test, t-test, Mann-Whitney U-test,
Wilcoxon rank score, total number of
mis-classifications score, signal-to-
noise statistic, MDS weighted gene
analysis, ANOVA

Support vector machines, multi-layer
perceptron artificial neural networks

ANOVA: Analysis of variance; MDS: Multi-dimensional scaling.
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decision-making step in experimental design,
prior to the initiation of the experiments. For
example, to make sure that sufficient numbers of
samples with known classifications are profiled for
the training set to be used in a supervised method.
In addition, once a classifier has been constructed
using a supervised method it is crucial to use an
independent test set or a cross-validation tech-
nique to estimate its classification error.

This paper reviews applications of supervised
methods in the analysis of microarray experi-
ments with special reference to pharmacogenom-
ics. It is widely appreciated that there are many
important applications of microarrays in phar-
macogenomics, for example:

« molecular target identification and drug discovery
« toxicology
e molecular diagnostics

The massive amount of data generated by
genomic methods has led to a need for computa-
tional methods to manage and analyze this data
and the methods used will influence the results
and their interpretation. The data mining tools
employed range from various clustering tech-
niques to supervised learning schemes [9). The
main emphasis of this review is on supervised
classifications methods, a brief summary of some
of the unsupervised methods used for array anal-
ysis is also given. This will provide some neces-
sary requisites for the following discussion on the
advantages of using supervised methods in the
context of pharmacogenomics. The most com-
mon methods used to analyze array data are
listed in Table 1.

Preprocessing

Prior to applying any computational analysis
tools, one needs to assess, and if necessary correct
for, the quality of the data. The simplest and

most straightforward approach is to apply cuts
based on intensities and spot areas. This can be
done more elegantly by using an error model to
estimate whether an expression ratio is departing
from unity due to measurement errors alone [10].
However, such procedures may remove genes that
only have low quality measurements for a few
samples from the entire data set. Remedies for
this include taking the quality into account
explicitly in the analysis by weighting measure-
ments with a quality factor [11] or using missing
value algorithms. The latter can be quite elabora-
tive and include user-defined choices and param-
eters 12. More profound and sophisticated
corrections for noise have been suggested [13,14].
Here the biological signals are separated from
other effects (for example, noise and experimen-
tal variation) and the latter are modeled and the
model is fitted to the data to allow relevant sig-
nals to be extracted. For most experiments, the
number of samples is relatively small, as com-
pared to the number of measured genes, this
could lead to erroneous conclusions as one might
distort the relevant biological signal. Neverthe-
less, as larger samples and replication of experi-
ments become standard, this will be the basic
approach to determine significant signals. When
supervised machine learning approaches are used
one might take a more pragmatic attitude and
assume that the calibrated feature model implic-
itly corrects for features that are not related to the
relevant biology but present in the data (as veri-
fied by the success on an independent test set).

Unsupervised analysis and dimensional
reduction

Many of the algorithms used for the analysis of
array data are based on pair-wise comparison of
expression patterns of either genes or samples.
This is addressed by mathematically defining a
measure of distance (or similarity) between genes
or samples in ‘expression space’. Unsupervised
clustering algorithms group samples or genes
based on their separation in expression space, as
given by the distance metric. Different choices of
distance metric will place different objects in dif-
ferent clusters 9.

The most commonly used method for cluster-
ing in gene expression space is hierarchical clus-
tering. It has been used both to reveal sample
closeness, for example for rhabdomyosarcomas
115, Bcell lymphomas [i6], breast tumors [17],
colon adenocarcinomas [18] and lung adenocarci-
nomas [19,20], as well as to cluster genes with sim-
ilar behavior in time course experiments [21],
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with the aim to find functionally related genes.
Other clustering approaches that have been used
extensively are K-means clustering [22] and self-
organizing maps (SOMES) [23].

Since the number of genes measured is very
large, one cannot visualize samples in expression
space directly. One way to reduce the dimension-
ality of the samples that is aimed at qualitative
displays rather than quantitative analysis, is
multi-dimensional scaling (MDS). This method
has been frequently used in expression analysis to
display samples, for example to characterize alve-
olar rhabdomyosarcoma [i15] and cutaneous
melanoma 24]. Another standard tool to visualize
samples (or genes) is principal component analy-
sis (PCA), which is a technique that rotates
expression space, such that the variance of
expression is dominated by as few linear combi-
nations of genes (or samples) as possible. Not
only can this be a good visualization tool, when
the two or three leading components are retained
[25] but in contrast to MDS an analytical form for
the transformation exists. Hence, it can be used
as a preprocessing tool [93; in particular for super-
vised learning [26) as will be discussed below.

Supervised classification

Supervised approaches are well suited to categorize
samples into known phenotypes. Typically, two
goals are on the agenda in these investigations:

« develop a robust classifier with validation pro-
cedures that can successfully handle blinded
test data

« identify the genes that are most important for
the classification

Hence, two objectives are achieved simultane-
ously. A diagnostic/prognostic tool for clinical
use, that can be used to diagnose a disease or to
predict the outcome or treatment response for
samples is obtained, at the same time insights
into the underlying molecular biology are
gained. The latter can be explored to find candi-
date drug targets or to better understand why a
treatment is not working for some patients. This
section provides an overview of how supervised
methods have been and can be used for analyzing
array data. As more and more microarray data
become publicly available it is likely that rigor-
ous evaluations of the performance of different
methods in this context will be undertaken [27].

Discriminatory gene classifiers
Disregarding collective effects amongst the
genes, limiting the investigation to single gene
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dependencies, the second goal (above) is gener-
ally achieved using various statistical measures
to, gene-by-gene, correlate expression levels of a
single gene with a phenotype of interest [24,28-32].
In this way a discriminatory weight is calculated
for each gene. Typically, the number of genes is
much greater than the number of experiments, it
is expected by random chance that some genes
correlate highly with the phenotype, resulting in
large weights. Therefore, it is crucial to estimate
a P-value for each weight that corresponds to the
probability that the weight can be obtained by
chance for such a large number of genes. P-val-
ues are readily calculated using random permuta-
tion tests. In these tests, the phenotype labels of
samples are randomly permuted and the weight
is computed for each gene. This random permu-
tation of sample labels is performed many times
to generate a distribution of weights that could
be expected under the null-hypothesis of ran-
dom gene expression. The weight values for the
actual classification can then be assigned P-val-
ues based on the weight distribution from the
random permutations [24,28]. In this way, it can
be verified that the discriminatory genes have
significant weights and that there is an overabun-
dance of genes discriminating between the phe-
notypes (Figure 1a). In addition, random
permutation tests can be used to assess whether a
gene is specifically associated with the classifica-
tion of interest by calculating the probability (a)
that the gene gets a larger weight for a random
classification [29,31] (Figure 1b). Together, a small P
and a indicate a good discriminatory gene. Once
the genes are ranked according to the discrimina-
tory weights, supervised classifiers can be con-
structed using the top-ranked genes. A general
approach to classify additional samples is that
each gene gives a flat vote or a vote weighted
with the weight, the gene’s expression level or the
difference between the average expressions in the
classes. Alternatively, the significant genes can be
used in for example, a (K-)nearest-neighbor clas-
sifier [25,33] or similar methods [34]. A plethora of
statistical measures have been used for discrimi-
natory weights. Golub etal. used a signal-to-
noise statistic, designed to find genes that on
average were expressed differently in two groups,
but also had a small variation of expression
within each group to discriminate acute myeloid
leukemia from acute lymphoblastic leukemia
[28]. The signal-to-noise statistic has subse-
quently been extensively used, for example, to
select marker genes for distinct lung adenocarci-
noma subclasses [191 and to characterize the
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Figure 1. Identification of discriminatory
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a. Estimation of a P-value for each weight corresponding to the probability that the weight can be obtained by chance. The
phenotype labels of samples are randomly permuted and the weight is computed for each gene. This random permutation of
sample labels is performed many times to generate a distribution of weights that could be expected under the null-hypothesis
of random gene expression (black bars). The weight values for the actual classification (shown in purple) are then assigned P-
values based on this weight distribution and the vertical line shown, corresponds to the weight with a P-value < 0.001, for
which there is an overabundance of genes separating class 1 from class 2. b. Random permutation tests are used to assess that
a gene is specifically associated with the classification of interest by calculating the probability (o) that the gene gets a larger
weight for a random classification. The histogram shows the distribution of the weights for a given gene from the
permutations, and if its actual weight is > 1.4 it corresponds to a < 0.001 (vertical line).
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expression profiles of gastrointestinal stromal
tumors with KIT mutations [315. A standard t-
test has been used to discriminate BRCA1 from
BRCAZ2 breast tumors [29] and to identify thera-
peutic targets for metastatic medulloblastoma
[19]. Other standard statistical methods such as F-
test or analysis of variance (ANOVA) can easily
be applied in a similar way. To find genes associ-
ated with survival in esophageal tumors, the rank
based Mann-Whitney U-test has been applied
[30]. Another approach is to find discriminatory
genes using the total number of mis-classifica-
tion (TNoM) score which, based on a threshold
expression value, measures the number of mis-
classified samples [24,29:3536]. A supervised
method, inspired by MDS analysis, to weight
and rank discriminatory genes has been used to
identify genes associated with a highly aggressive
subset of melanomas [24] and genes differing in
expression between human prostate cancer and
benign prostatic hyperplasia [37. Furthermore,
Fisher’s linear discriminant can be used as a
method for expression-based tumor classifica-
tions [3s].

It has been suggested that the simple idea of
looking for genes that are preferentially expressed
in a given tissue and are located in regions con-
taining unidentified disease genes provides a
shortcut to finding genes implicated in human
diseases [391. This is in agreement with the find-
ing by Allander et al. [31] that KIT itself is indeed
the number one ranked discriminator for gas-
trointestinal stromal tumors with KIT muta-
tions. Systematic investigations into genes that
are distinguished not only by their relative
expression in the affected tissue as compared to
other tissues, but also by their absolute mMRNA
abundance in the tissue in question, are likely to
be a fruitful approach to reduce the number of
candidate genes in searches for disease genes.

Machine learning methods

For supervised learning that includes collective
and nonlinear effects among genes one can pur-
sue two different paths:

e support vector machines (SVMS) [40]
« artificial neural networks (ANNS) [41]

Both methods are computer-based supervised
learning algorithms that can be trained to recog-
nize and characterize complex patterns. Pattern
recognition is achieved by adjusting the parame-
ters of the models fitting the data by a process of
error (for example, mis-classification) minimiza-
tion through learning from experience (using
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training samples). Both approaches have pros and
cons. Since array data are very high dimensional,
ANNs generally require some preprocessing to
avoid overfitting, which is not the case for SVMs.
On the other hand, the results from ANNSs allow
for a straightforward probability interpretation
and ANNs are more easily generalized to multi-
class classification problems. In addition, ANNs
can be used not only to classify samples according
to a dichotomous distinction (such as, cured ver-
sus fatal/refractory disease) but also according to
more sample specific phenotypes such as time of
survival (a continuous variable).

Support vector machines

SVMs [40], a supervised machine learning tech-
nique, are well suited to work with high dimen-
sional data such as array-based expression data.
When used for classification, SVMs separate one
class from the other in a set of binary training
data with a hyper-plane that is maximally distant
(called the maximal margin hyper-plane) from
the training examples. However, most real-world
problems involve data for which no such hyper-
plane exists. SVMs solve this inseparability by
mapping the data from the original input space
into a higher dimensional space and define a
hyper-plane that separates the data there. This
higher dimensional space is called feature space
and the hyper-plane found in this space corre-
sponds to a nonlinear decision boundary in the
original input space. An appealing feature with
SVMs is that data does not need to be explicitly
represented in feature space; the hyper-plane can
be located simply by defining a kernel function,
which plays the role of a dot product in the fea-
ture space. This dot product can be viewed as
analogous to the distance measures used in the
clustering algorithms above. However, SVMs are
capable of using a larger variety of such func-
tions. The fact that SVMs only use a kernel
function and do not need an explicit high
dimensional representation of the data, is what
makes them appealing for use in the supervised
classification of multi-dimensional array (MDA)
data (typically having relatively small sample
numbers). One obvious pitfall with the intro-
duction of feature space is that by artificially sep-
arating the data optimally in this way, one may
risk finding trivial solutions that overfit the data.
Sometimes, such as in the presence of noise, it is
better to trade some training accuracy for better
predictive power. SVMs address this problem by
using a soft margin that tolerates training errors.
Hence, a support vector machine is specified by
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choosing both a kernel function and setting a
parameter that controls the training error.

The initial application of SVMs to array data
aimed at functional classification of genes based
on their expression patterns [421. Brown et al. did
this by training SVMs to recognize genes belong-
ing to five functional classes, as defined in a data-
base based on biochemical and genetic studies. A
sixth class not expected to exhibit similar expres-
sion profiles was included as a control group. The
study showed that SVMs provided superior per-
formance as compared to four non-SVM meth-
ods (not including ANNSs) and to unsupervised
clustering methods such as hierarchical clustering.

Furey et al. applied SVMs to the classification
and validation of cancer tissue samples using
microarray expression data [43). The method was
primarily applied to the classification of ovarian
tissue samples. The aim was to separate ovarian
cancer samples from normal ovarian and nono-
varian tissue samples. Leave-one-out cross-vali-
dation was performed to evaluate the
classification performance. The classification
results were relatively good and interestingly, the
one sample that was most difficult to classify
turned out to be incorrectly labeled. This shows
the potential of supervised learning methods to
identify difficult cases. However, no method to
identify the genes most important for SVM clas-
sification, which is of particular interest in phar-
macogenomics, was presented. Instead, the
signal-to-noise statistic [28) was used to select a
subset of genes to be used in the SVM analysis.

Ramaswamy et al. [44] and Su et al. [45] used
SVMs to diagnose multiple common adult
malignancies. These studies demonstrated the
feasibility of multi-class molecular cancer classi-
fications. Since SVMs are not easily directly
adapted to multi-class classifications, they both
used an approach in which a committee of classi-
fiers, each identifying one class of cancers from
all others, was used. Su et al. compared various
classification methods and got somewhat better
classification results using methods that make no
assumptions about the distribution of the data
(such as SVMs or ANNE), as compared to super-
vised weighted correlations methods 281 and
other supervised learning methods (for example,
Fisher’s linear discriminant). Both devised meth-
ods to rank genes according to their importance
in classifying samples. Su et al. filtered for dis-
criminatory genes using the Wilcoxon rank
score, followed by ranking genes based on their
predictive accuracy in a leave-one-out cross-vali-
dation scheme. Ramaswamy et al., on the other

hand, analyzed the calibrated SVMs and ranked
the genes according to their contribution to
defining the decision hyper-plane, that is accord-
ing to their importance in classifying the sam-
ples. This latter approach in principle allows
each gene to be ranked for each sample. Since it
is likely that distinct clinical behaviors are
explained by different molecular mechanisms in
different patients, this approach hints at the
potential use of machine learning methods to
extract an individual’s genetic profile — thereby
creating the possibility of tailoring treatment for
each patient.

Artificial neural networks

The first generation of ANNs, so-called per-
ceptrons, was simple linear logistic regression
methods. More elaborate ANNSs in the form of
a multilayer perceptron is another machine
learning approach that has proven to be power-
ful when classifying tumor array-based expres-
sion data [26) (see 6] for a review on
applications of ANNSs for biological systems).
A multilayered perceptron consists of a set of
layers of perceptrons, modeled on the structure
and behavior of neurons in the human brain.
The input data, in this case the gene expression
data, is fed into the so-called input layer and
triggers a response in the following so-called
hidden layer(s). The response in the hidden
layer(s) in turn triggers a response in the out-
put layer. In the case of classification, each per-
ceptron in the output layer typically represents
a class. When the gene expression pattern of a
sample is fed into the ANN, ideally only the
output perceptron representing the class that
the sample belongs to should respond. For cal-
ibration, samples belonging to the classes of
interest are presented to the ANNS, which are
trained to recognize them in a supervised fash-
ion by a process of error minimization. Since
the number of perceptrons in the input layer
depends on the dimension of the input data, a
large number of perceptrons is needed for high
dimensional data. Furthermore, the more per-
ceptrons there are in the ANN, the more train-
ing samples are needed to calibrate all the
perceptrons in such a way that the classifier has
good predictive power. In the case of array data
where the number of samples is much less than
the number of measured genes this leads to a
large risk of overfitting. There are two parts to
the solution to this problem. Firstly, the
dimension of the data can be reduced, either
by using a dimensional reduction algorithm
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such as PCA [26] or by selecting a smaller set of
genes as input to the classifier in a supervised
way by using a discriminatory score (see for
example [45]). Secondly, the learning process
can be carefully monitored using a cross-vali-
dation scheme to avoid overtraining [26].
Another advantage with using a cross-valida-
tion scheme is that it results in a set of models,
each trained on a subset of the samples, which
can be used as a committee to classify test sam-
ples in a robust way [26]. Other methods to
avoid overtraining of ANNSs that may reduce
the need to reduce the dimension of the data
include regularization (for example, weight
decay), pruning and training with noise 413. A
possible way to use ANNSs to classify array data
is shown, together with illustrations of the cal-
ibration procedure, in Figure 2. The schematic
illustration in Figure 2a of the analysis process is
similar to that used for many supervised classi-
fication methods. As compared to SVMs,
ANNSs have been shown to represent most
functions that in this case map expression
space onto phenotypes, while SVMs instead
map the data onto a higher-dimensional space
in which the data are linearly separable into
two phenotypes.

Khan et al. [26] used ANNs for classification
and diagnostic prediction of small, round blue
cell tumors, belonging to four different diag-
nostic categories. To determine which genes
were most important for the classification,
Khan et al. analyzed the calibrated ANNs and
ranked the genes according to how sensitive the
output was with respect to each gene’s expres-
sion level. As an example, they found FGFR4, a
tyrosine kinase receptor, to be highly expressed
in rhabdomyosarcoma, a finding with thera-
peutic potential. This gene ranking method
shares its philosophy with the approach used by
Ramaswamy et al. (441 for SVMs. In particular,
it can rank each gene for each patient individu-
ally. This study demonstrated the potential
applications of ANN-based methods for tumor
diagnoses and the identification of candidate
targets for therapy.

Gruvberger etal. used ANNSs to investigate
the phenotype associated with estrogen receptor
(ER) a status in human breast cancer and found
that the ANNSs could accurately classify the
tumors [47] into ER-positive and -negative sam-
ples. Furthermore, they found that the ANNs
could accurately predict the ER status even when
excluding top discriminator genes. These results
provided evidence that ER-positive and ER-neg-
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ative tumors display remarkably different gene-
expression phenotypes.

Even though the optimal number of genes
selected for use in SVMs or ANNSs is typically
chosen by optimizing the training performance,
it should be noted that random permutation
tests to assess the significance of each highly
ranked gene are also feasible in this context. An
advantage with ANNs is that they can easily be
adopted to predict continuous values instead of
classes. This can, for example, be used to predict
protein levels of the ER-receptor instead of clas-
sifying samples into binary ER-positive or -nega-
tive classes. Such a prediction method can
potentially be used to gain further insights into
the relevant genes and is likely to be useful for
patient outcome predictions, where survival
times may be of importance.

Companies involved in array analysis

Some of the companies involved in analysis of
microarray data for pharmacogenomic applica-
tions are listed in Table 2.

Conclusions and expert opinion

In recent years, as microarrays have begun to be
used to a larger extent for investigating expres-
sion profiles of diseases, the emphasis has, for the
analysis methods, shifted from unsupervised to
supervised clustering methods. This is largely
because they are better suited to identify genes
specific to a given phenotype, such as patient
outcome after treatment. One of the great hopes
of microarrays has always been to use the pattern
reflecting the molecular state of a sample, under
some specific condition, to identify particular
characteristics of an individual, such as propen-
sity to a disorder or response to a drug. The iden-
tification of these characteristics depends
crucially on the analysis methods used. Recently,
supervised machine learning classification tech-
niques have been used to extract the genes most
important for classification, in ways that allow
for the genes to be investigated for each sample
individually 26,441. This hints at the future use of
machine learning methods not only as new diag-
nostic tests but also to help physicians develop
and choose the drugs that work best and have
least side effects for a given individual.

To illustrate differences in results obtained
using unsupervised and supervised methods a
comparison of the investigations by Alizadeh
et al. [16] and Shipp etal. [32) serves as a good
example. Both analyze gene expression patterns
of diffuse large B cell lymphoma (DLBCL). Ali-
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Figure 2. An ANN based classifier.
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Figure 2a. Schematic illustration of the analysis processThe entire data set of N samples is quality
filtered 1. and then the dimensionality is further reduced by PCA to 10 PCA projections2. from the original
M expression values. Next the N2 test experiments are set aside and N1 training experiments are randomly
partitioned into three groups 3. One of these groups is reserved for validation and the two remaining groups
are used for calibration 4. ANN models are then calibrated using the 10 PCA values for each sample as input
and the phenotype category as output 5. For each model the calibration is optimized with a number of
iterative cycles (epochs). This is repeated using each of the three groups for validation 6. Samples are again
randomly partitioned and the entire training process repeated 7. For each selection of validation group one
model is calibrated resulting in a total of 3 xK trained models. Once the models are calibrated, they are used
to rank the genes according to their importance for the classification 8. The entire process (2-7) is repeated
using only the top ranked genes9. The N2 test experiments are subsequently classified using all the
calibrated models.

ANN: Artificial neural network; PCA: Principal component analysis.
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Figure 2. An ANN based classifier.
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Figure 2b. Monitoring the calibration of the models. The average classification error per experiment
(using a summed square error measure) is plotted during the training iterations (epochs). A pair of lines,
purple (training) and gray (validation) represents one model (each corresponding to a random partitioning of
the data). The decrease in the errors with increasing epochs demonstrates the learning of the models to
classify the experiments. All the models perform well for both training and validation. In addition, there is no
sign of over-fitting, which would result in an increase in the error for the validation at the point where the
models begin to learn features in the training set that are not present in the validation set.
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Figure 2c. Minimizing the number of genes. The average number of misclassified samples for allmodels
is plotted against increasing number of used genes. As can be seen using the 96 highest ranked genes results
in zero mis-classifications for this example.

Reprinted and adapted with permission from [26]. ©2001 Nature Publishing Group.

ANN: Artificial neural network.
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Table 2. Some of the companies involved in developing microarray data analysis methods for

pharmacogenomics.

Company
Affymetrix
Applied Maths

BioDiscovery
Clustan
GeneData

InforMax
InforSense

lobion Informatics
Lion Biosciences

Molmine

OmniViz

Partek

Rosetta Biosoftware

Silicon Genetics

Spotfire

Software
Data Mining Tool
GeneMaths

ArrayPack™
GeneSight™

ClustanGraphics
GeneData Expressionist™

Xpression NTI
Kensington Discovery

GeneTraffic™
ArraySCOUT™

J-express

OmniViz Pro™

Partek Pro

Partek Discoverer
Partek Infer
Partek Predict

Rosetta Resolver™

GeneSpring™
GeNet™
Metamine™

DecisionSite™

Methods/applications
Clustering and discriminatory gene analysis.

Clustering tools with bootstrap methods to indicate
significance. PCA, SOM and discriminant analysis. Provides
an integrated platform together with Array-Pro™ from
Media Cybernetics.

Integrated expression management system. K-means and
hierachical clustering, SOMs and PCA. Discriminatory gene
analysis.

Numerous clustering methods. Cluster validation.

K-means and hierachical clustering and SOMs.
Discriminatory gene analysis.

Hierarchical and nonhierarchical clustering methods.

Methods for clustering, time-series analysis, classification
(decision tree, neural network and Bayesian), predictive
modeling, dimensional reduction and discriminatory gene
analysis.

Hierarchical and K-means clustering. PCA and MDS.

Connectivity to modules for analysis of molecular networks
and biological pathways.

Hierarchical and K-means clustering. SOMs and PCA. Profile
similarity search.

Clustering, dimensionality reduction and projection
methods. Correlating genotypes such as SNPs to therapeutic
outcome or response.

PCA, MDS, cluster analysis, neural network regression
models and discriminant analysis. Bootstrap for model
validation.

Bayesian classifiers, PCA and discriminatory gene analysis.

Machine learning tools, clustering methods and PCA.
Integrated platform for gene expression research.

Clustering and prediction tools. Integrated platform for
functional genomics.

MDS: Multidimensional scaling; PCA: Principal component analysis; SOM: Self-organizing map.

zadeh et al. used unsupervised hierarchical clus-
tering [211 to show that DLBCLs fell into two
groups according to the biological origin of the
malignancies:

e those with expression profiles similar to nor-
mal germinal center (GC) B cells

e those with expression profiles similar to
in vitro activated peripheral blood B cells

Although this study was not primarily aimed at
predicting the outcome of disease, Alizadehet al.
found the GC-like DLBCLs to have a more
favorable outcome. On the other hand, Shipp

et al. used a supervised weighted voting scheme
based on the signal-to-noise statistic [28 to
directly relate the gene expression patterns of
DLBCLs to patient outcome (after standard
chemotherapeutic treatment) and the method
was evaluated using a leave-one-out cross-valida-
tion method. The highest outcome prediction
accuracy was achieved using predictors contain-
ing 13 genes, and the results at diagnosis indicate
the presence of a gene expression signature for
outcome in DLBCL. Of note is the connection
between this classification and the cell-of-origin
classification by Alizadeh et al. Shipp et al. found
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that the discriminatory genes described by Aliza-
deh etal. also significantly separated their
DLBCL samples according to the cell-of-origin
distinction. However, in this data set this distinc-
tion was not correlated with patient outcome.
On the other hand, those of the 13 genes used in
the Ship et al. predictors that were present on the
Alizadeh et al. arrays were, when evaluated as
single markers, clearly correlated with outcome
in the Alizadeh etal. expression data. Even
though larger sample sets are needed to pinpoint
optimal genes related to patient outcome in
DLBCLs, these results illustrate important dif-
ferences between supervised and unsupervised
approaches. The supervised approach found
genes associated with significant outcome differ-
ences in both data sets and some of the genes
were related to apoptotic responses to receptor
engagement and potentially to cytotoxic therapy.
This suggests that the advantage with a super-
vised analysis method is not only that it is
extendable to a clinical setting in the form of a
classifier or predictor but also that the approach
may clearly suggest strategies for the use and
development of therapies. In conclusion, if one
has a clear hypothesis about different categories
of samples a supervised method is advantageous
and allows the construction of a classifier/predic-
tor. However, since there are many genes com-
pared to the number of samples, it is crucial to
validate a supervised classifier using an inde-
pendent sample set. Otherwise the classifier may
depend on features that are only present in the
training set, thus having poor predictive power.
This is particularly important in the relatively
new field of microarray research, since the meas-
urements are noisy and subject to experimental

Highlights

the classifier.

« Unsupervised methods are useful for exploration of data sets for initial
quality control, ‘class discovery' and the formulation of novel hypotheses.

« Supervised methods are used for class prediction and identification of the
most important genes for classification.

« Supervised methods require a priori knowledge of the ‘correct’
classification of at least some of the samples, which are used to calibrate

< Itis crucial to evaluate the performance of a supervised classifier using an
independent test set or a cross-validation technique.

« The utility of multi-class molecular cancer classifications using supervised
methods has been demonstrated.

» Several studies have demonstrated the feasibility of using supervised
methods to predict outcome for various diseases.

* Methods to extract the genes most important for the classification from
supervised methods have been developed, and are likely to identify
possible novel targets for therapy.

www.ashley-pub.com
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variability and the sample sets are small and may
not be as well matched as in traditional clinical
investigations. A potential advantage with unsu-
pervised methods is to generate novel hypothe-
ses, as illustrated by the finding of the two
groups of DLBCLSs [16].

In addition to expression arrays, other microar-
rays exist or are under development, which also
hold great promise as diagnostic tools and aids to
biological research. One example is antibody-
based arrays to measure the levels of proteins in
tissues. From an analysis point of view, methods
that can use and correlate information from dif-
ferent kinds of microarrays in a supervised fashion
will be of great value. For example, comparative
genomic hybridization can be performed to ana-
lyze the genomic content of tissue samples using
the same cDNA microarrays used for expression
analysis [4849]. In this way, one obtains both the
expression levels and copy numbers for the same
large set of genes. Supervised methods can then be
used to find genes whose expression levels are sig-
nificantly attributable to their amplification or
deletion status. Such transcripts and their encoded
proteins would be ideal targets for anticancer ther-
apies, as demonstrated by the clinical success of
therapies against amplified oncogenes, such as
ERBB2 [501 and EGFR [s1] in breast cancer and
other solid tumors. Another type of array that has
great potential to rapidly uncover the functions of
genes is cell arrays [52. These constructs can be
queried for the consequences of expressing or
potentially knocking-out genes, such that casual
connections between genes are revealed. This is in
contrast to expression arrays from which only cor-
relation (‘guilt by association’) information
regarding relations between genes is gained. Cell
arrays will provide plenty of opportunities for the
development of analysis methods to discover gene
products that alter cellular physiology, unravel
their pathways and identify small molecule targets
affecting them. Furthermore, expression array
data can be used together with drug activity pat-
terns to elucidate gene-drug relationships [53-55].

Many problems, such as large costs, need for
elaborate tissue preparation skills and difficulties
in easily accessing patient samples, remain to be
solved before microarrays will live up to their full
potential for research and clinical applications.
However, these problems are likely to be over-
come with time. Similarly, the potential use of
supervised analysis methods as diagnostic and
drug target discovery tools has so far been some-
what limited by small sample sets. As larger sam-
ple sets and more ingenious array techniques
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become readily available, the promise of analyz-
ing array data for pharmacogenomics applica-
tions is likely to finally be fulfiled.

Outlook

In the last decade, we have seen a rapid growth in
the application of genomics and proteomics in
biological, translational and clinical research.
Array-based methods to diagnose and predict the
outcome of diseases have been developed. Over
the next decade, high-dimensional data gener-
ated from microarrays and proteomic-based

applications are likely to be taken to the clinic.
One can predict that it will be possible to use
these methods for rapid diagnosis and predic-
tion of outcome. A large part of this will involve
therapeutics and toxicology for the individuali-
zation of therapy and for optimizing personal
dosage to minimize toxic side-effects of drugs —
individual patient management. New genes and
their products which are potential targets for
therapy will be identified. We expect that super-
vised analysis methods will be an integral part of
this translational research.
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